【題目】如圖,在正方體ABCD﹣A1B1C1D1中,點(diǎn)M、N分別是面對角線A1B與B1D1的中點(diǎn),設(shè) = , = , = .
(1)以{ , , }為基底,表示向量 ;
(2)求證:MN∥平面BCC1B1;
(3)求直線MN與平面A1BD所成角的正弦值.
【答案】
(1)解:
(2)證明:連A1C1、BC1,則N為A1C1的中點(diǎn),
又M為A1B的中點(diǎn),
∴MN∥BC1,
又MN平面BCC1B1,BC1平面BCC1B1,
∴MN∥平面BCC1B1
(3)解:∵DA、DC、DD1兩兩垂直,
∴可以D為原點(diǎn),DA、DC、DD1分別為x軸、y軸、z軸建立空間直角坐標(biāo)系D﹣xyz.
設(shè)正方體棱長為2,
則M(2,1,1),N(1,1,2),A1(2,0,2),B(2,2,0),
D(0,0,0),A(2,0,0),C1(0,2,2),
∴ , , , ,
∵ , ,
∴ , ,
∴ 為平面A1BD的法向量,
設(shè)直線MN與平面A1BD所成的角為θ,
則 ,
所以直線MN與平面A1BD所成角的正弦值為 .
【解析】(1)利用向量的加法,即可得出結(jié)論;(2)連A1C1、BC1 , 則N為A1C1的中點(diǎn),證明MN∥BC1 , 即可證明結(jié)論;(3)以D為原點(diǎn),DA、DC、DD1分別為x軸、y軸、z軸建立空間直角坐標(biāo)系D﹣xyz,求出平面A1BD的法向量,即可求直線MN與平面A1BD所成角的正弦值.
【考點(diǎn)精析】關(guān)于本題考查的直線與平面平行的判定和空間角的異面直線所成的角,需要了解平面外一條直線與此平面內(nèi)的一條直線平行,則該直線與此平面平行;簡記為:線線平行,則線面平行;已知為兩異面直線,A,C與B,D分別是上的任意兩點(diǎn),所成的角為,則才能得出正確答案.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知在直角坐標(biāo)系xOy中,以坐標(biāo)原點(diǎn)為極點(diǎn),x軸正半軸為極軸建立極坐標(biāo)系,圓錐曲線C的極坐標(biāo)方程為ρ2= ,F(xiàn)1是圓錐曲線C的左焦點(diǎn).直線l: (t為參數(shù)).
(1)求圓錐曲線C的直角坐標(biāo)方程和直線l的直角坐標(biāo)方程;
(2)若直線l與圓錐曲線C交于M,N兩點(diǎn),求|F1M|+|F1N|.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某市規(guī)定,高中學(xué)生三年在校期間參加不少于小時(shí)的社區(qū)服務(wù)才合格.教育部門在全市隨機(jī)抽取200位學(xué)生參加社區(qū)服務(wù)的數(shù)據(jù),按時(shí)間段,,,
,(單位:小時(shí))進(jìn)行統(tǒng)計(jì),其頻率分布直方圖如圖所示.
(Ⅰ)求抽取的200位學(xué)生中,參加社區(qū)服務(wù)時(shí)間不少于90小時(shí)的學(xué)生人數(shù),并估計(jì)
從全市高中學(xué)生中任意選取一人,其參加社區(qū)服務(wù)時(shí)間不少于90小時(shí)的概率;
(Ⅱ)從全市高中學(xué)生(人數(shù)很多)中任意選取3位學(xué)生,記為3位學(xué)生中參加社區(qū)服務(wù)時(shí)間不少于90小時(shí)的人數(shù).試求隨機(jī)變量的分布列和數(shù)學(xué)期望.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】正方體AC1的棱長為1,過點(diǎn)A作平面A1BD的垂線,垂足為點(diǎn)H.有以下四個(gè)命題:
①點(diǎn)H是△A1BD的垂心;②AH垂直平面CB1D1;
③AH= ;④點(diǎn)H到平面A1B1C1D1的距離為 .
其中真命題的個(gè)數(shù)為( )
A.1
B.2
C.3
D.4
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知拋物線y2=4x和點(diǎn)M(6,0),O為坐標(biāo)原點(diǎn),直線l過點(diǎn)M,且與拋物線交于A,B兩點(diǎn).
(1)求 ;
(2)若△OAB的面積等于12 ,求直線l的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù).
(1)當(dāng)時(shí),求滿足的的取值;
(2)若函數(shù)是定義在上的奇函數(shù)
①存在,不等式有解,求的取值范圍;
②若函數(shù)滿足,若對任意,不等式恒成立,求實(shí)數(shù)的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】斜三棱柱ABC﹣A1B1C1中,AA1=AC=BC=2,∠A1AC=∠C1CB=60°,且平面ACC1A1⊥平面BCC1B1 , 則A1B的長度為 .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】下列函數(shù)中,是偶函數(shù)且不存在零點(diǎn)的是( )
A.y=x2
B.y=
C.y=log2x
D.y=( )|x|
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知集合A={x|x2+x+p=0}.
(Ⅰ)若A=,求實(shí)數(shù)p的取值范圍;
(Ⅱ)若A中的元素均為負(fù)數(shù),求實(shí)數(shù)p的取值范圍.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com