【題目】已知拋物線y2=4x和點(diǎn)M(6,0),O為坐標(biāo)原點(diǎn),直線l過點(diǎn)M,且與拋物線交于A,B兩點(diǎn).
(1)求 ;
(2)若△OAB的面積等于12 ,求直線l的方程.
【答案】
(1)解:設(shè)直線l的方程為x=my+6,A(x1,y1),B(x2,y2),
由x=my+6與拋物線y2=4x得y2﹣4my﹣24=0,顯然△>0,
y1+y2=4m,y1y2=﹣24,x1x2=36
可得 =x1x2+y1y2=12
(2)解:S△OAB= |OM||y1﹣y2|=3 =12 =12 ,
∴m2=4,m=±2.
那么直線l的方程為x+2y﹣6=0和x﹣2y﹣6=0
【解析】(1)由x=my+6與拋物線y2=4x得y2﹣4my﹣24=0,利用 =x1x2+y1y2 , 求 ;(2)S△OAB= |OM||y1﹣y2|=3 =12 =12 ,求出m,即可求直線l的方程.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù).
(1)求函數(shù)的定義域,判斷并證明的奇偶性;
(2)判斷函數(shù)的單調(diào)性;
(3)解不等式.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)(, 為自然對數(shù)的底數(shù)).
(1)討論函數(shù)的單調(diào)性;
(2)若,函數(shù)在上為增函數(shù),求實數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)= 在點(diǎn)(1,f(1))處的切線與x軸平行.
(1)求實數(shù)a的值及f(x)的極值;
(2)若對任意x1 , x2∈[e2 , +∞),有| |> ,求實數(shù)k的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)點(diǎn)P(x,y)是曲線a|x|+b|y|=1(a≥0,b≥0)上任意一點(diǎn),其坐標(biāo)(x,y)均滿足 ,則 a+b取值范圍為( )
A.(0,2]
B.[1,2]
C.[1,+∞)
D.[2,+∞)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在正方體ABCD﹣A1B1C1D1中,點(diǎn)M、N分別是面對角線A1B與B1D1的中點(diǎn),設(shè) = , = , = .
(1)以{ , , }為基底,表示向量 ;
(2)求證:MN∥平面BCC1B1;
(3)求直線MN與平面A1BD所成角的正弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù), ,其中.
(1)當(dāng)時,求函數(shù)的值域;
(2)若對任意,均有,求的取值范圍;
(3)當(dāng)時,設(shè),若的最小值為,求實數(shù)的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】一款擊鼓小游戲的規(guī)則如下:每盤游戲都需擊鼓三次,每次擊鼓要么出現(xiàn)一次音樂,要么不出現(xiàn)音樂;每盤游戲擊鼓三次后,出現(xiàn)一次音樂獲得10分,出現(xiàn)兩次音樂獲得20分,出現(xiàn)三次音樂獲得100分,沒有出現(xiàn)音樂則扣除200分(即獲得﹣200分).設(shè)每次擊鼓出現(xiàn)音樂的概率為 ,且各次擊鼓出現(xiàn)音樂相互獨(dú)立.
(1)設(shè)每盤游戲獲得的分?jǐn)?shù)為X,求X的分布列和數(shù)學(xué)期望E(X).
(2)玩三盤游戲,至少有一盤出現(xiàn)音樂的概率是多少?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知集合A={x|1≤x≤7},B={x|﹣2m+1<x<m},全集為實數(shù)集R.
(1)若m=5,求A∪B,(RA)∩B;
(2)若A∩B=A,求m的取值范圍.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com