2.下列不等式組中,能表示圖中陰影部分的是( 。
A.$\left\{\begin{array}{l}{y≥1}\\{2x-y+2≥0}\end{array}\right.$B.$\left\{\begin{array}{l}{y≥-1}\\{2x-y+2≤0}\end{array}\right.$
C.$\left\{\begin{array}{l}{x≤0}\\{y≥-1}\\{2x-y+2≤0}\end{array}\right.$D.$\left\{\begin{array}{l}{x≤0}\\{y≥-1}\\{2x-y+2≥0}\end{array}\right.$

分析 利用可行域判斷不等式組即可.

解答 解:可行域是三角形,所以A,B不正確,約束條件C表示的可行域表不是三角形,約束條件D表示的可行域是三角形,滿足題意.
故選:D.

點評 本題考查線性規(guī)劃的簡單應(yīng)用,可行域的判斷,是基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

12.設(shè)集合A={-1,1,3},B={a-1,a2+3},A∩B={3},則實數(shù)a=4或0.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

13.設(shè)數(shù)列{an}的前n項和為Sn.已知a1=1,$\frac{{2{S_n}}}{n}$=an+1-$\frac{1}{3}$n2-n-$\frac{2}{3}$,n∈N*
(1)求數(shù)列{an}的通項公式;
(2)設(shè)數(shù)列{bn}滿足an-an-1=bna${\;}_{2^n}}$,求數(shù)列{bn的n前項和Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

10.已知y=f(x)為奇函數(shù),當(dāng)x>0時f(x)=x(1-x),則當(dāng)x≤0時,則f(x)=x(1+x).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

17.下列函數(shù)中,既是奇函數(shù),又在(1,+∞)上遞增的是( 。
A.y=x2B.y=x2-2xC.y=sinxD.y=x3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

7.在△ABC中,內(nèi)角A,B,C的對邊分別為a,b,c,已知a=bcosC+csinB,b=2,則△ABC面積的最大值為$\sqrt{2}+1$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

14.已知x>3,則函數(shù)y=$\frac{1}{x-3}$+x的最小值為5.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

11.已知e是自然對數(shù)的底數(shù),函數(shù)f(x)=ex+x-2的零點為a,函數(shù)g(x)=lnx+x-2的零點為b,則a+b=(  )
A.1B.2C.3D.4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

12.已知數(shù)列{an}滿足a1=1,an+1-an=2,等比數(shù)列{bn}滿足b1=a1,b4=a4+1.
(1)求數(shù)列{an},{bn}的通項公式;
(2)設(shè)cn=an+bn,求數(shù)列{cn}的前n項和Sn

查看答案和解析>>

同步練習(xí)冊答案