12.設(shè)集合A={-1,1,3},B={a-1,a2+3},A∩B={3},則實數(shù)a=4或0.

分析 根據(jù)交集的定義,得出3∈{a-1,a2+3},即a-1=3或a2+3=3,求出a即可.

解答 解:因為A∩B={3},
根據(jù)交集的運算推理得:
3是集合A和集合B的公共元素,
而集合A中有3,所以得到a-1=3或a2+3=3,
解得a=4或a=0.
故答案為:4或0.

點評 本題考查了集合的定義與運算問題,是基礎(chǔ)題目.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.已知P為拋物線y2=4x上的動點,求點P到點A(-1,1)的距離與點P到直線x=-1的距離之和的最小值( 。
A.2B.$\sqrt{5}$C.3D.$\sqrt{7}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.如圖所示,在直四棱柱ABCD-A1B1C1D1中,側(cè)棱垂直于底面,DB=BC,DB⊥AC,點M是棱BB1上的一點.
(1)若DB=BC=CD,求BD與平面CDD1C1所成角;
(2)求證:MD⊥AC;
(3)是否存在點M,使得平面DMC1⊥平面CC1D1D?若存在,試確定點M的位置,并給出證明;若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.某幾何體的三視圖如圖所示,則該幾何體的體積為(  )
A.8-$\frac{π}{2}$B.8-$\frac{π}{3}$C.8-$\frac{2π}{3}$D.8-$\frac{7π}{6}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

7.已知圓C:x2+y2=1,過第一象限內(nèi)一點P(a,b)作圓C的兩條切線,且點分別為A、B,若∠APB=60°,O為坐標(biāo)原點,則OP的長為2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

17.某單位為了了解辦公樓用電量y(度)與氣溫x(oC)之間的關(guān)系,隨機統(tǒng)計了四個工作日的用電量與當(dāng)天平均氣溫,并制作了對照表:
氣溫(oC)181310-1
用電量(度)25354258
由表中數(shù)據(jù)得到線性回歸方程為$\hat y$=$\hat b$x+$\hat a$,由公式求得$\hat b$=-1.72.
(1)求$\hat a$的值;
(2)當(dāng)氣溫為5oC時,預(yù)測用電量約為多少?(精確到1)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.下列所給出的賦值語句中正確的是(  )
A.4=XB.a=b=2C.Y=-YD.x+y=1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

1.若函數(shù)f(x)是定義域D內(nèi)的某個區(qū)間I上的增函數(shù),且h(x)=$\frac{f(x)}{x}$在I上是減函數(shù),則稱y=f(x)是I上的“單反減函數(shù)”,已知f(x)=ex+x,g(x)=x+lnx+$\frac{2}{x}$.
(1)判斷f(x)在(0,+∞)上是否是“單反減函數(shù)”,并說明理由;
(2)若g(x)是[$\frac{a}{4}$,+∞)上的“單反減函數(shù)”,求實數(shù)a取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.下列不等式組中,能表示圖中陰影部分的是( 。
A.$\left\{\begin{array}{l}{y≥1}\\{2x-y+2≥0}\end{array}\right.$B.$\left\{\begin{array}{l}{y≥-1}\\{2x-y+2≤0}\end{array}\right.$
C.$\left\{\begin{array}{l}{x≤0}\\{y≥-1}\\{2x-y+2≤0}\end{array}\right.$D.$\left\{\begin{array}{l}{x≤0}\\{y≥-1}\\{2x-y+2≥0}\end{array}\right.$

查看答案和解析>>

同步練習(xí)冊答案