7.已知f(x)=lnx,g(x)=$\frac{1}{2}$x2+mx+$\frac{7}{2}$(m<0),直線l與函數(shù)f(x)的圖象相切,切點(diǎn)的橫坐標(biāo)為1,且直線l與函數(shù)g(x)的圖象也相切.
(1)求直線l的方程及實(shí)數(shù)m的值;
(2)若h(x)=f(x)-x+3,求函數(shù)h(x)的最大值;
(3)當(dāng)0<b<a時(shí),求證:f(a+b)-f(2a)<$\frac{b-a}{2a}$.

分析 (1)首先求出直線l方程為y=x-1,直線l與函數(shù)y=g(x)的圖象相切,所以有x2+2(m-1)x+9=0方程有兩個(gè)相等實(shí)根.
(2)利用導(dǎo)數(shù)判斷函數(shù)的單調(diào)性,直接求出函數(shù)的最大值即可;
(3)由(2)知當(dāng)x∈(0,1)時(shí),h(x)<h(1),即x∈(0,1)時(shí),lnx-x+3<2,lnx<x-1來(lái)證明.

解答 解:(1)∵f'(x)=$\frac{1}{x}$,∴f'(1)=1.∴直線l的斜率為k=1,且與函數(shù)f(x)的圖象的切點(diǎn)坐標(biāo)為(1,0).
∴直線l的方程為y=x-1.
又∵直線l與函數(shù)y=g(x)的圖象相切,
∴方程組$\left\{\begin{array}{l}{y=x-1}\\{y=\frac{1}{2}{x}^{2}+mx+\frac{7}{2}}\end{array}\right.$有一解.由上述方程消去y,并整理得
  x2+2(m-1)x+9=0  ①
方程①有兩個(gè)相等的實(shí)數(shù)根,∴△=[2(m-1)]2-4×9=0
解得m=4或m=-2;∵m<0∴m=-2.
(2)由(1)可知g(x)=$\frac{1}{2}{x}^{2}$-2x+$\frac{7}{2}$,∴g'(x)=x-2
h(x)=f(x)-x+13=lnx-x+3(x>0).h'(x)=$\frac{1}{x}$-1=$\frac{1-x}{x}$.
∴當(dāng)x∈(0,1)時(shí),h'(x)>0,當(dāng)x∈(1,+∞)時(shí),h'(x)<0.
∴當(dāng)x=1時(shí),h(x)取最大值,其最大值為2.
證明:(3)f(a+b)-f(2a)=ln(a+b)-ln2a=ln$\frac{a+b}{2a}$.
∵0<b<a,0<$\frac{a+b}{2a}<1$
由(2)知當(dāng)x∈(0,1)時(shí),h(x)<h(1)∴即x∈(0,1)時(shí),lnx-x+3<2,lnx<x-1
ln$\frac{a+b}{2a}$<$\frac{a+b}{2a}-1$.
∴f(a+b)-f(2a)<$\frac{b-a}{2a}$

點(diǎn)評(píng) 本題主要考察導(dǎo)數(shù)與斜率的關(guān)系,函數(shù)的單調(diào)性與最值,以及不等式證明,屬中等題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

17.已知命題p:m2-m-6≥0,命題q:$\frac{x^2}{m}+\frac{y^2}{2}$=1表示焦點(diǎn)在x軸上的橢圓,若“p且q”與“非q”同時(shí)為假命題,求m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

18.已知三個(gè)正數(shù)a,b,c為等比數(shù)列,則$\frac{a+c}$+$\frac{a+c}$的最小值為$\frac{5}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

15.給出以下命題:
①雙曲線$\frac{y^2}{2}$-x2=1的漸近線方程為y=±$\sqrt{2}$x;
②命題P:?x∈R+,sinx+$\frac{1}{sinx}$≥1是真命題;
③已知線性回歸方程為$\widehaty$=3+2x,當(dāng)變量x增加2個(gè)單位,其預(yù)報(bào)值平均增加4個(gè)單位;
④設(shè)隨機(jī)變量ξ服從正態(tài)分布N(0,1),若P(ξ>1)=0.2,則P(-1<ξ<0)=0.6;
則正確命題的序號(hào)為①③.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

2.已知點(diǎn)P(x,y)為橢圓$\frac{{x}^{2}}{4}$+y2=1上任意一點(diǎn),點(diǎn)Q(0,3),則|PQ|的最大值 4.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

12.對(duì)實(shí)數(shù)a和b,定義運(yùn)算“⊕”:a⊕b=$\left\{\begin{array}{l}a,a-b≤1\\ b,a-b>1\end{array}$.若函數(shù)f(x)=(x2-2)⊕(x-x2)-c,x∈R有兩個(gè)零點(diǎn),則實(shí)數(shù)c的取值范圍為$({-∞,-2}]∪({-1,-\frac{3}{4}})$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

19.函數(shù)f(x)=lnx+3x-10的零點(diǎn)所在的大致范圍是(  )
A.(0,1)B.(1,2)C.(2,3)D.(3,4)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

16.如圖,四邊形ABCD的四個(gè)頂點(diǎn)在半徑為2的圓O上,若∠BAD=$\frac{π}{3}$,CD=2,則BC=( 。
A.2B.4C.$\sqrt{3}$D.$2\sqrt{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

17.將一張紙沿直線l對(duì)折一次后,點(diǎn)A(0,4)與點(diǎn)B(8,0)重疊,點(diǎn)C(6,8)與點(diǎn)D(m,n)重疊.
(1)求直線l的方程;
(2)求m+n的值;
(3)直線l上是否存在一點(diǎn)P,使得||PB|-|PC||存在最大值,如果存在,請(qǐng)求出最大值,以及此時(shí)點(diǎn)P的坐標(biāo);如果不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案