3.設(shè)拋物線C:y2=2px的焦點(diǎn)F是圓M:x2+y2-4x-21=0的圓心,則圓M截C的準(zhǔn)線所得弦長為6.

分析 求得圓M的圓心和半徑,可得p=4,即可得到準(zhǔn)線方程,代入圓M的方程,可得交點(diǎn)坐標(biāo),進(jìn)而得到所求弦長.

解答 解:圓M:x2+y2-4x-21=0的圓心M(2,0),
半徑為r=5,
即有F(2,0),即$\frac{p}{2}$=2,解得p=4,
則拋物線C:y2=8x的準(zhǔn)線方程為x=-2,
令x=-2,代入圓M,可得4+y2+8-21=0,
解得y=±3.即有弦長為6.
故答案為:6.

點(diǎn)評 本題考查拋物線的方程和性質(zhì),注意運(yùn)用圓的圓心和方程,考查運(yùn)算能力,屬于基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

6.“cosx=1”是“sinx=0”的充分非必要條件.(填“充分非必要”、“必要非充分”、“充要”或“既非充分也非必要”)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

7.求下列函數(shù)的定義域:
(1)y=log5(1-x);
(2)y=$\frac{1}{lo{g}_{2}x}$;
(3)y=log7$\frac{1}{1-2x}$;
(4)y=$\sqrt{lo{g}_{3}x}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

11.已知函數(shù)f(x)=$\frac{lnx+k}{{e}^{x}}$(其中k∈R,e是自然對數(shù)的底數(shù)),f′(x)為f(x)導(dǎo)函數(shù).
(Ⅰ)若x∈(0,1]時(shí),f′(x)=0都有解,求k的取值范圍;
(Ⅱ)若f′(1)=0,試證明:對任意x>0,f′(x)<$\frac{{e}^{-2}+1}{{x}^{2}+x}$恒成立.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

18.設(shè)函數(shù)f(x)=x-lnx.
(Ⅰ)求函數(shù)的單調(diào)區(qū)間;
(Ⅱ)若不等式$\frac{lnx}{x}$≤1-$\frac{a}{x}$恒成立,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

8.已知圓C:x2+(y-3)2=4,過點(diǎn)A(-1,0)的直線l與圓C相交于P、Q兩點(diǎn),若|PQ|=2$\sqrt{3}$,則直線l的方程為x=-1或4x-3y+4=0.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

15.2015年7月9日21時(shí)15分,臺風(fēng)“蓮花”在我國廣東省陸豐市甲東鎮(zhèn)沿海登陸,造成165.17萬人受災(zāi),5.6萬人緊急轉(zhuǎn)移安置,288間房屋倒塌,46.5千公頃農(nóng)田受災(zāi),直接經(jīng)濟(jì)損失12.99億元.距離陸豐市222千米的梅州也受到了臺風(fēng)的影響,適逢暑假,小明調(diào)查了梅州某小區(qū)的50戶居民由于臺風(fēng)造成的經(jīng)濟(jì)損失,將收集的數(shù)據(jù)分成[0,2000],(2000,4000],(4000,6000],(6000,8000],(8000,10000]五組,并作出如圖頻率分布直方圖:
(Ⅰ) 試根據(jù)頻率分布直方圖估計(jì)小區(qū)每戶居民的平均損失(同一組中的數(shù)據(jù)用該組區(qū)間的中點(diǎn)值作代表);
(Ⅱ) 小明向班級同學(xué)發(fā)出倡議,為該小區(qū)居民捐款.現(xiàn)從損失超過6000元的居民中隨機(jī)抽出2戶進(jìn)行捐款援助,求這兩戶在同一分組的概率;
(Ⅲ)臺風(fēng)后區(qū)委會號召小區(qū)居民為臺風(fēng)重災(zāi)區(qū)捐款,小明調(diào)查的50戶居民捐款情況如表,根據(jù)表格中所給數(shù)據(jù),分別求b,c,a+b,c+d,a+c,b+d,a+b+c+d的值,并說明是否有95%以上的把握認(rèn)為捐款數(shù)額多于或少于500元和自身經(jīng)濟(jì)損失是否到4000元有關(guān)?
經(jīng)濟(jì)損失不超過
4000元
經(jīng)濟(jì)損失超過
4000元
合計(jì)
捐款超過
500元
a=30b
捐款不超
過500元
cd=6
合計(jì)
P(K2≥k)0.150.100.050.0250.0100.0050.001
k2.0722.7063.8415.0246.6357.87910.828
附:臨界值表參考公式:,${K^2}=\frac{{n{{(ad-bc)}^2}}}{(a+b)(c+d)(a+c)(b+d)},n=a+b+c+d$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

12.已知數(shù)列{an}滿足a1=1,an+1=$\frac{{n}^{2}{a}_{n}}{{n}^{2}+1}$(n∈N+).
(1)證明:an+1<an;
(2)證明:$\frac{{a}_{1}}{{a}_{2}}+\frac{{a}_{2}}{{a}_{3}}+…+\frac{{a}_{n}}{{a}_{n+1}}≤n+2-\frac{1}{n}$;
(3)證明:an$>\frac{1}{4}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

13.△ABC中內(nèi)角A,B,C的對邊分別為a,b,c,且2(a2-b2)=2accosB+bc.
(1)求A的大;
(2)若b+c=10,則△ABC的周長L的最小值.

查看答案和解析>>

同步練習(xí)冊答案