對(duì)于函數(shù),若在定義域存在實(shí)數(shù),滿足,則稱為“局部奇函數(shù)”.
(1)已知二次函數(shù),試判斷是否為“局部奇函數(shù)”?并說(shuō)明理由;
(2)設(shè)是定義在上的“局部奇函數(shù)”,求實(shí)數(shù)的取值范圍.
(1)是“局部奇函數(shù)”;(2).

試題分析:(1)本題實(shí)質(zhì)就是解方程,如果這個(gè)方程有實(shí)數(shù)解,就說(shuō)明是“局部奇函數(shù)”,如果這個(gè)方程無(wú)實(shí)數(shù)解,就說(shuō)明不是“局部奇函數(shù)”,易知有實(shí)數(shù)解,因此答案是肯定的;(2)已經(jīng)明確是“局部奇函數(shù)”,也就是說(shuō)方程一定有實(shí)數(shù)解,問(wèn)題也就變成方程上有解,求參數(shù)的取值范圍,又方程可變形為,因此求的取值范圍,就相當(dāng)于求函數(shù)的值域,用換元法(設(shè)),再借助于函數(shù)的單調(diào)性就可求出.
試題解析:(1)為“局部奇函數(shù)”等價(jià)于關(guān)于的方程有解.
(3分)
有解為“局部奇函數(shù)”.(5分)
(2)當(dāng)時(shí), 可轉(zhuǎn)化為(8分)
因?yàn)?img src="http://thumb.1010pic.com/pic2/upload/papers/20140824/20140824042143029447.png" style="vertical-align:middle;" />的定義域?yàn)?img src="http://thumb.1010pic.com/pic2/upload/papers/20140824/20140824042143123326.png" style="vertical-align:middle;" />,所以方程上有解,令,(9分)

因?yàn)?img src="http://thumb.1010pic.com/pic2/upload/papers/20140824/20140824042143700596.png" style="vertical-align:middle;" />在上遞減,在上遞增,(11分)
(12分)
(14分)
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:填空題


把根式表示成分?jǐn)?shù)冪的形式。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

已知函數(shù)f(x)是定義在R上的奇函數(shù),當(dāng)x<0時(shí),f(x)=ex(x+1),給出下列命題:
①當(dāng)x>0時(shí),f(x)=ex(1-x);②函數(shù)f(x)有兩個(gè)零點(diǎn);③f(x)>0的解集為(-1,0)∪(1,+∞);④?x1,x2∈R,都有|f(x1)-f(x2)|<2.
其中正確命題的個(gè)數(shù)是(  )
A.1 B.2
C.3 D.4

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

下列函數(shù)中值域是(0,+∞)的函數(shù)是( 。
A.y=5
1
2-x
B.y=(
1
2
1-x
C.y=
1-2x
D.y=
1
2x
-1

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

某池塘中原有一塊浮草,浮草蔓延后的面積y(m2)與時(shí)間t(月)之間的函數(shù)關(guān)系是y=at-1(a>0且a≠1),它的圖象如圖所示:
①池塘中原有浮草的面積是0.5m2
②到第7個(gè)月浮草的面積一定能超過(guò)60m2;
③浮草每月增加的面積都相等;
④若浮草面積達(dá)到4m2,16m2,64m2所經(jīng)過(guò)的時(shí)間分別為t1,t2,t3,則t1+t2<t3
其中所有正確命題的序號(hào)為 ______.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

對(duì)于給定的函數(shù)f(x)=2x-1,有下列四個(gè)結(jié)論:
①f(x)的圖象關(guān)于原點(diǎn)對(duì)稱;②f(x)在R上是增函數(shù);
③f(x)的值域?yàn)閇-1,+∞);④f(|x|)有最小值為0.其中正確結(jié)論的序號(hào)是( 。
A.①②B.②③C.②④D.①③④

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

定義在上的偶函數(shù),滿足,都有,且當(dāng)時(shí),.若函數(shù)上有三個(gè)零點(diǎn),則的取值范圍是         .

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

已知函數(shù)的圖象過(guò)原點(diǎn),且在原點(diǎn)處的切線斜率是,則不等式組所確定的平面區(qū)域在內(nèi)的面積為  (   )
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

提高過(guò)江大橋的車輛通行能力可改善整個(gè)城市的交通狀況。在一般情況下,大橋上的車流速度(單位:千米/小時(shí))是車流密度(單位:輛/千米)的函數(shù)。當(dāng)橋上的車流密度達(dá)到200輛/千米時(shí),造成堵塞,此時(shí)車流速度為0;當(dāng)車流密度不超過(guò)20輛/千米時(shí),車流速度為60千米/小時(shí)。研究表明當(dāng)時(shí),車流速度是車流密度的一次函數(shù)。
當(dāng)時(shí),求函數(shù)的表達(dá)式;
當(dāng)車流密度為多大時(shí),車流量(單位時(shí)間內(nèi)通過(guò)橋上某觀測(cè)點(diǎn)的車輛數(shù),單位:輛/小時(shí))可以達(dá)到最大?并求出最大值。(精確到1輛/小時(shí))

查看答案和解析>>

同步練習(xí)冊(cè)答案