分析 (Ⅰ)根據(jù)二倍角的正余弦公式,和兩角和的正弦公式即可化簡(jiǎn)f(x)=$2sin(x+\frac{π}{6})$,而由x的范圍可以求出x+$\frac{π}{6}$的范圍,從而可得出f(x)的值域;
(Ⅱ)由f(A)=2即可求得A=$\frac{π}{3}$,從而由余弦定理和不等式a2+b2≥2ab可求得|AB||AC|≤1,根據(jù)向量數(shù)量積的計(jì)算公式便可得出$\overrightarrow{AB}•\overrightarrow{AC}$的最大值.
解答 解:(Ⅰ)$f(x)=\sqrt{3}sinx+cosx=2sin(x+\frac{π}{6})$;
∵$x∈[\frac{π}{6},\frac{2π}{3}]$;
∴$x+\frac{π}{6}∈[\frac{π}{3},\frac{5π}{6}]$;
∴$\frac{1}{2}≤sin(x+\frac{π}{6})≤1$;
∴f(x)的值域?yàn)閇1,2];
(Ⅱ)∵f(A)=2,∴$sin(A+\frac{π}{6})=1$;
在△ABC中,∵0<A<π,∴$A=\frac{π}{3}$;
∴$cosA=\frac{{{{|{AB}|}^2}+{{|{AC}|}^2}-{{|{BC}|}^2}}}{{2|{AB}||{AC}|}}=\frac{1}{2}$;
∴|AB||AC|=|AB|2+|AC|2-1≥2|AB||AC|-1;
∴|AB||AC|≤1;
∴$\overrightarrow{AB}•\overrightarrow{AC}=|{AB}||{AC}|cosA=\frac{1}{2}|{AB}||{AC}|≤\frac{1}{2}$;
∴$\overrightarrow{AB}•\overrightarrow{AC}$的最大值為$\frac{1}{2}$.
點(diǎn)評(píng) 考查二倍角的正余弦公式,兩角和的正弦公式,以及余弦定理,已知三角函數(shù)值求角,不等式a2+b2≥2ab的運(yùn)用,數(shù)量積的計(jì)算公式.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | f(-17)<f(19)<f(40) | B. | f(40)<f(19)<f(-17) | C. | f(19)<f(40)<f(-17) | D. | f(-17)<f(40)<f(19) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com