已知⊙C的方程為x2+(y-1)2=5,直線l經(jīng)過點(diǎn)(1,1).
(1)若直線l的傾斜角為
π
4
,求直線l的方程;
(2)設(shè)直線l與⊙C交于A、B兩點(diǎn),若|AB|=
17
,求直線l的斜率.
考點(diǎn):直線和圓的方程的應(yīng)用
專題:綜合題,直線與圓
分析:(1)求出直線的斜率,即可求直線l的方程;
(2)去出弦心距、利用點(diǎn)到直線的距離公式可得直線的斜率.
解答: 解:(1)∵直線l的傾斜角為
π
4
,
∴直線l的斜率為1,
∵直線l經(jīng)過點(diǎn)(1,1),
∴直線l的方程為x-y=0;
(2)由于半徑r=
5
,|AB|=
17
,∴弦心距d=
3
2
,
再由點(diǎn)到直線的距離公式可得d=
|0-1+1-m|
m2+1
=
3
2
,
解得m=±
3
點(diǎn)評:本題主要考查直線和圓的位置關(guān)系,點(diǎn)到直線的距離公式,考查學(xué)生的計(jì)算能力,屬于中檔題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知f(x)為偶函數(shù),當(dāng)x≥0時(shí),f(x)=
cosπx,x∈[0,
1
2
]
2x-1,x∈(
1
2
,+∞)
,則不等式f(x)≤
1
2
的解集為(  )
A、[
1
4
2
3
]∪[
4
3
,
7
4
]
B、[-
3
4
,-
1
3
]∪[
1
4
,
2
3
]
C、[
1
3
,
3
4
]∪[
4
3
,
7
4
]
D、[-
3
4
,-
1
3
]∪[
1
3
,
3
4
]

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若點(diǎn)P,Q在拋物線y2=4x上,O是坐標(biāo)原點(diǎn),且
OP
OQ
=0.則直線PQ恒過的頂點(diǎn)的坐標(biāo)是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知一次函數(shù)f(x)=ax-2.
(1)解關(guān)于x的不等式|f(x)|<4;
(2)若不等式|f(x)|≤3對任意的x∈[0,1]恒成立,求實(shí)數(shù)a的范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=a|x+1|-b|2x-4|,當(dāng)a=1,b=
1
2
時(shí),解不等式f(x)≤0.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知等差數(shù)列{an}的前n項(xiàng)和sn,且s4=16,a4=7.
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)設(shè)bn=
1
anan+1
,求數(shù)列{bn}的前n項(xiàng)和為Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

某學(xué)校有120名教師,其年齡都在20~60歲之間,各年齡段人數(shù)按[20,30),[30,40),[40,50),[50,60)分組,其頻率分布直方圖如右圖所示.學(xué)校為了適應(yīng)新課程改革,要求每名教師都要參加甲、乙兩項(xiàng)培訓(xùn),培訓(xùn)結(jié)束后進(jìn)行結(jié)業(yè)考試,已知各年齡段兩項(xiàng)培訓(xùn)結(jié)業(yè)考試成績優(yōu)秀的人數(shù)如下表所示.假設(shè)兩項(xiàng)培訓(xùn)是相互獨(dú)立的,結(jié)業(yè)考試也互不影響.
年齡分組甲項(xiàng)培訓(xùn)成績優(yōu)秀人數(shù)乙項(xiàng)培訓(xùn)成績優(yōu)秀人數(shù)
[20,30)3018
[30,40)3624
[40,50)129
[50,60)43
(1)若用分層抽樣法從全校教師中抽取一個(gè)容量為40的樣本,求各年齡段應(yīng)分別抽取的人數(shù),并估計(jì)全校教師的平均年齡;
(2)隨機(jī)從年齡段[20,30)和[30,40)中各抽取1人,求這兩人中至少有一人在甲、乙兩項(xiàng)培訓(xùn)結(jié)業(yè)考試成績?yōu)閮?yōu)秀的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知數(shù)列{an}的首項(xiàng)a1=1,an+1=
2
an
+1,則這個(gè)數(shù)列的第四項(xiàng)是( 。
A、
11
7
B、
11
5
C、
21
11
D、6

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

數(shù)列{an}滿足a1=1,
1
2an+1
=
1
2an
+1(n∈N*).
(Ⅰ)求證{
1
an
}是等差數(shù)列;
(Ⅱ)若bn=an•an+1,求{bn}的前n項(xiàng)和Sn

查看答案和解析>>

同步練習(xí)冊答案