20.下列說法中正確的個數(shù)是( 。
①零向量是沒有方向的  
②零向量的長度為0 
③零向量的方向是任意的 
④單位向量的模都相等.
A.0B.1C.2D.3

分析 根據(jù)零向量與單位向量的定義進行判斷.

解答 解:零向量的長度為0,方向是任意的,單位向量的長度為1.
故①錯誤,②③④正確.
故選D.

點評 本題考查了特殊向量的定義,屬于基礎題.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:填空題

10.為了了解學生的視力情況,隨機抽查了一批學生的視力,將抽查結(jié)果繪制成頻率分布直方圖(如圖所示),若在[5.0,5.4]內(nèi)的學生人數(shù)是10,則根據(jù)圖中數(shù)據(jù)可得被樣本數(shù)據(jù)的中位數(shù)是4.456;視力在[3.8,4.2]人數(shù)為12.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

11.已知函數(shù)f(x)=x3-3x,當x在區(qū)間任意取值時,函數(shù)值不小于0又不大于2的概率是( 。
A.$\frac{3-\sqrt{3}}{4}$B.$\frac{3-\sqrt{3}}{3}$C.$\frac{2-\sqrt{3}}{4}$D.$\frac{2-\sqrt{3}}{3}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

8.某醫(yī)學院讀書協(xié)會欲研究晝夜溫差大小與患感冒人數(shù)多少之間的關(guān)系,該協(xié)會分別到氣象局與某醫(yī)院抄錄了1至6月份每月10號的晝夜溫差情況與因患感冒而就診的人數(shù),得到如圖頻數(shù)分布直方圖:
該協(xié)會確定的研究方案是:先從這六組數(shù)據(jù)中選取2組,用剩下的4組數(shù)據(jù)求線性回歸方程,再用被選取的2組數(shù)據(jù)進行檢驗.

(1)記選取的2組數(shù)據(jù)相隔的月份數(shù)為X,若是相鄰2組的數(shù)據(jù),則X=0,求X的分布列及數(shù)學期望;
(2)已知選取的是1月與6月的兩組數(shù)據(jù).
(i)請根據(jù)2至5月份的數(shù)據(jù),求出就診人數(shù)y關(guān)于晝夜溫差x的線性回歸方程;
(ii)若由線性回歸方程得到的估計數(shù)據(jù)與所選出的檢驗數(shù)據(jù)的誤差均不超過2人,則認為得到的線性回歸方程是理想的,試問該協(xié)會所得線性回歸方程是否理想?
(參考公式:$\widehat$=$\frac{\sum_{i=1}^{n}{x}_{i}{y}_{i}-n\overline{x}\overline{y}}{\sum_{i=1}^{n}{{x}_{i}}^{2}-n{\overline{x}}^{2}}$=$\frac{\sum_{i=1}^{n}({x}_{i}-\overline{x})({y}_{i}-\overline{y})}{\sum_{i=1}^{n}({x}_{i}-\overline{x})^{2}}$),$\widehat{a}$=$\overline{y}$-b$\overline{x}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

15.已知點P(x,y)為曲線$\frac{x^2}{16}$+$\frac{y^2}{12}$=1(y≥0)上的任意一點,求x+2y-12的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

5.已知定義在R上的函數(shù)f(x)滿足f(-x)=-f(x),f(1+x)=f(1-x),且當x∈[0,1],f(x)=log2(x+1),則f(31)=(  )
A.0B.1C.2D.-1

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

12.已知點A(2,-1)在直線3x-4y+m=0上,則m的值為(  )
A.10B.-10C.2D.-2

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

9.已知A(2,5),B(4,1),若點P(x,y)在線段AB上,則2x-y的最大值為7.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

10.求函數(shù)y=sin2x+5cosx-3的值域.

查看答案和解析>>

同步練習冊答案