一個幾何體的三視圖如圖所示,則它的體積是
 

考點:由三視圖求面積、體積
專題:空間位置關系與距離
分析:由已知中的三視圖,可得該幾何體是一個半圓錐和四棱錐的組合體,分別計算出兩個錐體的體積,相加可得答案.
解答: 解:由已知中的三視圖,可得該幾何體是一個半圓錐和四棱錐的組合體,
半圓錐底面半徑為1,高為
3
,故體積為:
1
2
×
1
3
×π×12×
3
=
3
6
π
,
四棱錐底面為邊長為2的正方形,高為
3
,故體積為:
1
3
×2×2×
3
=
4
3
3

故該幾何體的體積V=
3
6
π
+
4
3
3
,
故答案為:
3
6
π
+
4
3
3
點評:本題考查由三視圖求幾何體的體積和表面積,根據(jù)已知的三視圖分析出幾何體的形狀是關鍵.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

給定下列命題:
①命題p:5x-x2>0,q:|x-2|<3,則¬p是¬q的必要不充分條件.
②“若sinα≠
1
2
,則α≠
π
6
”;
③“若xy=0,則x=0且y=0”的逆否命題;
④命題“?x0∈R,使x02-x0+1≤0”的否定.
其中真命題的個數(shù)是( 。
A、1B、2C、3D、4

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

如圖,某小區(qū)為美化環(huán)境,準備在小區(qū)內(nèi)草坪的一側修建一條直路OC;另一側修建一條休閑大道,它的前一段OD是函數(shù)y=k
x
(k>0)的一部分,后一段DBC是函數(shù)y=Asin(ωx+φ)(A>0,|φ|
π
2
),x∈[4,8]時的圖象,圖象的最高點為B(5,
8
3
3
),DF⊥OC,垂足為F
(Ⅰ)求函數(shù)y=Asin(ωx+φ)的解析式和D點坐標;
(Ⅱ)若在草坪內(nèi)修建如圖的兒童游樂園PMFE,問點P落在曲線OD上何處時,兒童樂園的面積最大?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

設等差數(shù)列{an}的前n項和為Sn,已知(a10-1)3+11a10=0,(a2-1)3+11a2=22,則下列結論正確的是( 。
A、S11=11,a10<a2
B、S11=11,a10>a2
C、S11=22,a10<a2
D、S11=22,a10>a2

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

多面體的三視圖如圖所示,則該多面體體積為(單位cm)
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

設點P(x,y)滿足條件
x≤0
y≥0
y≤2x+2
,點Q(a,b)(a≤0,b≥0)滿足
OP
OQ
≤1恒成立,其中O是坐標原點,則Q點的軌跡所圍成圖形的面積是
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=2sin(2x+
π
6
),在△ABC中,a,b,c分別是角A,B,C的對邊,若a=
3
,f(A)=1,則b+c的最大值為
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知一個幾何體的三視圖是三個全等的邊長為l的正方形,如圖所示,則該幾何體的體積為( 。
A、
1
6
B、
1
3
C、
2
3
D、
5
6

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

函數(shù)y=lg(sinx)的定義域是
 

查看答案和解析>>

同步練習冊答案