【題目】某種出口產(chǎn)品的關(guān)稅稅率t.市場(chǎng)價(jià)格x(單位:千元)與市場(chǎng)供應(yīng)量p(單位:萬(wàn)件)之間近似滿足關(guān)系式:,其中k.b均為常數(shù).當(dāng)關(guān)稅稅率為75%時(shí),若市場(chǎng)價(jià)格為5千元,則市場(chǎng)供應(yīng)量約為1萬(wàn)件;若市場(chǎng)價(jià)格為7千元,則市場(chǎng)供應(yīng)量約為2萬(wàn)件.
(1)試確定k.b的值;
(2)市場(chǎng)需求量q(單位:萬(wàn)件)與市場(chǎng)價(jià)格x近似滿足關(guān)系式:.P = q時(shí),市場(chǎng)價(jià)格稱為市場(chǎng)平衡價(jià)格.當(dāng)市場(chǎng)平衡價(jià)格不超過4千元時(shí),試確定關(guān)稅稅率的最大值.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】定義在R上的函數(shù)f(x)滿足:f(x)+f′(x)>1,f(0)=4,則不等式exf(x)>ex+3(其中e為自然對(duì)數(shù)的底數(shù))的解集為( )
A.(0,+∞)
B.(﹣∞,0)∪(3,+∞)
C.(﹣∞,0)∪(0,+∞)
D.(3,+∞)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=k﹣ (其中k為常數(shù));
(1)求:函數(shù)的定義域;
(2)證明:函數(shù)在區(qū)間(0,+∞)上為增函數(shù);
(3)若函數(shù)為奇函數(shù),求k的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓C1、拋物線C2的焦點(diǎn)均在x軸上,C1的中心和C2的頂點(diǎn)均為原點(diǎn)O,從每條曲線上取兩個(gè)點(diǎn),將其坐標(biāo)記錄于下表中:
x | 3 | ﹣2 | 4 | |
y | ﹣2 | 0 | ﹣4 |
(1)求C1、C2的標(biāo)準(zhǔn)方程;
(2)請(qǐng)問是否存在直線l滿足條件:①過C2的焦點(diǎn)F;②與C1交不同兩點(diǎn)M、N且滿足 ?若存在,求出直線l的方程;若不存在,說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】把一顆骰子投擲兩次,記第一次出現(xiàn)的點(diǎn)數(shù)為a,第二次出現(xiàn)的點(diǎn)數(shù)為b.已知方程組 .
(1)求方程組只有一個(gè)解的概率;
(2)若方程組每個(gè)解對(duì)應(yīng)平面直角坐標(biāo)系中點(diǎn)P(x,y),求點(diǎn)P落在第四象限的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】我國(guó)是世界上嚴(yán)重缺水的國(guó)家,某市政府為了鼓勵(lì)居民節(jié)約用水,計(jì)劃調(diào)整居民生活用水收費(fèi)方案,擬確定一個(gè)合理的月用水量標(biāo)準(zhǔn)(噸),一位居民的月用水量不超過的部分按平價(jià)收費(fèi),超過的部分按議價(jià)收費(fèi).為了了解居民用水情況,通過抽樣,獲得了某年100位居民每人的月均用水量(單位:噸),將數(shù)據(jù)按照, , , 分成9組,制成了如圖所示的頻率分布直方圖.
(Ⅰ)求直方圖中的值;
(Ⅱ)若將頻率視為概率,從該城市居民中隨機(jī)抽取3人,記這3人中月均用水量不低于3噸的人數(shù)為,求的分布列與數(shù)學(xué)期望.
(Ⅲ)若該市政府希望使85%的居民每月的用水量不超過標(biāo)準(zhǔn)(噸),估計(jì)的值(精確到0.01),并說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,將一個(gè)各面都涂了油漆的正方體,切割為125個(gè)同樣大小的小正方體,經(jīng)過攪拌后,從中隨機(jī)取一個(gè)小正方體,記它的涂漆面數(shù)為X,則X的均值E(X)=( )
A.
B.
C.
D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知 =(2,1), =(1,7), =(5,1),設(shè)Z是直線OP上的一動(dòng)點(diǎn).
(1)求使 取最小值時(shí)的 ;
(2)對(duì)(1)中求出的點(diǎn)Z,求cos∠AZB的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知拋物線E:x2=2py(p>0),直線y=kx+2與E交于A、B兩點(diǎn),且 =2,其中O為原點(diǎn).
(1)求拋物線E的方程;
(2)點(diǎn)C坐標(biāo)為(0,﹣2),記直線CA、CB的斜率分別為k1 , k2 , 證明:k12+k22﹣2k2為定值.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com