【題目】“糖尿病”已經(jīng)成為日漸多發(fā)的一種疾病,其具有危害性大且難以完全治愈的特征.為了更好的抑制“糖尿病”多發(fā)的勢頭,某社區(qū)衛(wèi)生醫(yī)療機構(gòu)針對所服務(wù)居民開展了免費測血糖活動,將隨機抽取的10名居民均分為, 兩組(組:4.3,5.1,4.6,4.1,4.9; 組:5.1,4.9,4.0,4.0,4.5).

(1)通過提供的數(shù)據(jù)請判斷哪一組居民的血糖值更低;

(2)現(xiàn)從組的5名居民中隨機選取2名,求這2名中至少有1名的血糖值低于4.5的概率.

【答案】(1) 組居民的血糖值更低(2)

【解析】試題分析: 1根據(jù)題中給出的數(shù)據(jù)分別計算A,B兩組的平均數(shù),比較可得結(jié)果;(2) 組5名居民中隨機選取2名,基本事件總數(shù)為10,這2名居民中至少有1名的血糖值低于4.5對立事件是這2名居民的視力都不低于4.5,列舉出基本事件,根據(jù)古典概型求出概率,再求出事件的對立事件即可.

試題解析:

1組5名居民血糖值的平均數(shù)

組5名居民血糖值的平均數(shù),

從計算結(jié)果看, 組居民的血糖值更低.

(2)從組5名居民中隨機選取2名,基本事件總數(shù)為10,

這2名居民中至少有1名的血糖值低于4.5對立事件是這2名居民的視力都不低于4.5,這2名居民的血糖值都不低于4.5,包含的基本事件有, , ,

所以這2名居民的血糖值都不低于4.5的概率

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知向量
(Ⅰ)若 方向上的投影為 ,求λ的值;
(Ⅱ)命題P:向量 的夾角為銳角;
命題q: ,其中向量 =( )(λ,α∈R).若“p或q”為真命題,“p且q”為假命題,求λ的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某地最近十年對某商品的需求量逐年上升,下表是部分統(tǒng)計數(shù)據(jù):

年份

2008

2010

2012

2014

2016

需要量(萬件)

236

246

257

276

286


(1)利用所給數(shù)據(jù)求年需求量y與年份x之間的回歸直線方程 = x+ ;
(2)預(yù)測該地2018年的商品需求量(結(jié)果保留整數(shù)).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】要測量底部不能到達(dá)的電視塔AB的高度,在C點測得塔頂A的仰角是45°,在D點測得塔頂A的仰角是30°,并測得水平面上的∠BCD=120°,CD=40m,則電視塔的高度為(
A.40m
B.20m
C.305m
D.(20 ﹣40)m

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】解答
(1)將一顆骰子(一種各個面上分別標(biāo)有1,2,3,4,5,6個點的正方體玩具)先后拋擲2次,以分別得到的點數(shù)(m,n)作為點P的坐標(biāo)(m,n),求:點P落在區(qū)域 內(nèi)的概率;
(2)在區(qū)間[1,6]上任取兩個實數(shù)(m,n),求:使方程x2+mx+n2=0有實數(shù)根的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系xOy中,設(shè)命題p:橢圓C: + =1的焦點在x軸上;命題q:直線l:x﹣y+m=0與圓O:x2+y2=9有公共點. 若命題p、命題q中有且只有一個為真命題,求實數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】選修4-4:坐標(biāo)系與參數(shù)方程

以直角坐標(biāo)系的原點為極點, 軸的正半軸為極軸建立坐標(biāo)系,已知點的直角坐標(biāo)為,若直線的極坐標(biāo)方程為.曲線的參數(shù)方程是為參數(shù)).

(1)求直線和曲線的普通方程;

(2)設(shè)直線和曲線交于兩點,求.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)=sin(ωx+φ)(ω>0,|φ|< )的部分圖象如圖所示.

(1)求函數(shù)f(x)的解析式,并寫出f(x)的單調(diào)減區(qū)間;
(2)已知△ABC的內(nèi)角分別是A,B,C,A為銳角,且f ,求cosA的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖所示,在△ABC中,點M是BC的中點,點N在AC上,且AN=3NC,AM與BN相交于點P,設(shè) = , = ,用 表示

查看答案和解析>>

同步練習(xí)冊答案