【題目】如圖所示,在△ABC中,點(diǎn)M是BC的中點(diǎn),點(diǎn)N在AC上,且AN=3NC,AM與BN相交于點(diǎn)P,設(shè) = = ,用 表示

【答案】解:設(shè) = λ( + )= + )= + , ∵B,P,N三點(diǎn)共線,
+ =1,
∴λ=
= + = + = + +
= + )+ = + = +
【解析】設(shè) ,根據(jù)B,P,N三點(diǎn)共線,求出λ= ,再根據(jù)根據(jù)向量加法的幾何意義,向量的數(shù)乘運(yùn)算,即可求出
【考點(diǎn)精析】本題主要考查了平面向量的基本定理及其意義的相關(guān)知識(shí)點(diǎn),需要掌握如果、是同一平面內(nèi)的兩個(gè)不共線向量,那么對(duì)于這一平面內(nèi)的任意向量,有且只有一對(duì)實(shí)數(shù)、,使才能正確解答此題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】“糖尿病”已經(jīng)成為日漸多發(fā)的一種疾病,其具有危害性大且難以完全治愈的特征.為了更好的抑制“糖尿病”多發(fā)的勢(shì)頭,某社區(qū)衛(wèi)生醫(yī)療機(jī)構(gòu)針對(duì)所服務(wù)居民開展了免費(fèi)測(cè)血糖活動(dòng),將隨機(jī)抽取的10名居民均分為, 兩組(組:4.3,5.1,4.6,4.1,4.9; 組:5.1,4.9,4.0,4.0,4.5).

(1)通過提供的數(shù)據(jù)請(qǐng)判斷哪一組居民的血糖值更低;

(2)現(xiàn)從組的5名居民中隨機(jī)選取2名,求這2名中至少有1名的血糖值低于4.5的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某高校組織自主招生考試,其有2 000名學(xué)生報(bào)名參加了筆試,成績(jī)均介于195分到275分之間,從中隨機(jī)抽取50名同學(xué)的成績(jī)進(jìn)行統(tǒng)計(jì),將統(tǒng)計(jì)結(jié)果按如下方式分成八組:第一組[195,205),第二組[205,215),…,第八組[265,275).如圖是按上述分組方法得到的頻率分布直方圖.

(1)從這2 000名學(xué)生中,任取1人,求這個(gè)人的分?jǐn)?shù)在255~265之間的概率約是多少?
(2)求這2 000名學(xué)生的平均分?jǐn)?shù);
(3)若計(jì)劃按成績(jī)?nèi)? 000名學(xué)生進(jìn)入面試環(huán)節(jié),試估計(jì)應(yīng)將分?jǐn)?shù)線定為多少?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】一只口袋內(nèi)裝有大小相同的5只球,其中3只白球2只黑球,從中一次摸出兩只球.
(1)共有多少個(gè)基本事件,并列出.
(2)摸出的兩只球都是白球的概率.
(3)摸出的兩只球是一黑一白的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】下列有關(guān)命題的敘述,錯(cuò)誤的個(gè)數(shù)為(
①若p∨q為真命題,則p∧q為真命題
②“x>5”是“x2﹣4x﹣5>0”的充分不必要條件
③命題p:x∈R,使得x2+x﹣1<0,則¬p:x∈R,使得x2+x﹣1≥0
④命題“若x2﹣3x+2=0,則x=1或x=2”的逆否命題為“若x≠1或x≠2,則x2﹣3x+2≠0”
A.1
B.2
C.3
D.4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知向量 =3 1﹣2 2 , =4 1+ 2 , 其中 1=(1,0), 2=(0,1),求:
(1) 和| + |的值;
(2) 夾角θ的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知A、B、C為△ABC的三個(gè)內(nèi)角,且其對(duì)邊分別為a、b、c,若cosBcosC﹣sinBsinC=
(1)求角A;
(2)若a=2 ,b+c=4,求△ABC的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在△ABC中,已知AB= ,cosB= ,AC邊上的中線BD= ,求sinA的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知圓C:x2+y2﹣8y+12=0,直線l經(jīng)過點(diǎn)D(﹣2,0),且斜率為k.
(1)求以線段CD為直徑的圓E的方程;
(2)若直線l與圓C相離,求k的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案