【題目】已知是橢圓)與拋物線:的一個公共點,且橢圓與拋物線具有一個相同的焦點

(Ⅰ)求橢圓及拋物線的方程

(Ⅱ)設過且互相垂直的兩動直線,與橢圓交于兩點,與拋物線交于兩點,求四邊形面積的最小值.

【答案】(Ⅰ)橢圓的方程為,拋物線的方程為;(Ⅱ)見解析.

【解析】

(Ⅰ)根據(jù)是橢圓)與拋物線:的一個公共點,可求得,從而可得相同的焦點的坐標,結合,即可求得,從而可得橢圓及拋物線的方程;(Ⅱ)由題可知直線斜率存在,設直線的方程,,當時,求出,當時,直線的方程為,結合韋達定理及弦長公式求得,表示出,通過換元及二次函數(shù)思想即可求得四邊形面積的最小值.

(Ⅰ)拋物線一點

,即拋物線的方程為,

在橢圓

,結合(負舍),

橢圓的方程為,拋物線的方程為.

(Ⅱ)由題可知直線斜率存在,設直線的方程,

①當時,直線的方程,,故

②當時,直線的方程為,.

由弦長公式知 .

同理可得.

.

,則,時,,

綜上所述:四邊形面積的最小值為8.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】已知直線的參數(shù)方程: 為參數(shù)),曲線的參數(shù)方程: 為參數(shù)),且直線交曲線兩點.

(1)將曲線的參數(shù)方程化為普通方程,并求時, 的長度;

(2)巳知點,求當直線傾斜角變化時, 的范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】定義在上的函數(shù),如果滿足:對任意,存在常數(shù),都有成立,則稱函數(shù)上的有界函數(shù),其中稱為函數(shù)的上界.已知函數(shù).

(1)當時,求函數(shù)上的值域,并判斷函數(shù)上是否為有界函數(shù),請說明理由;

(2)若函數(shù)上是以3為上界的有界函數(shù),求實數(shù)的取值范圍;

(3)若,函數(shù)上的上界是,求的解析式.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù),且對定義域上的任意,當時,,則(

A.B.

C.D.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】判斷下列命題的真假.

1)過不在平面內(nèi)的一點,有且只有一個平面與這個平面平行;

2)過不在平面內(nèi)的一條直線,有且只有一個平面與這個平面平行;

3)給定兩個平行平面中一個平面內(nèi)的一條直線,則在另一個平面內(nèi)有且只有一條直線與這條直線平行.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù),其中.

(1)若曲線在點處的切線方程為,求函數(shù)的解析式.

(2)討論函數(shù)的單調(diào)性.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】2019年,隨著中國第一款5G手機投入市場,5G技術已經(jīng)進入高速發(fā)展階段.已知某5G手機生產(chǎn)廠家通過數(shù)據(jù)分析,得到如下規(guī)律:每生產(chǎn)手機萬臺,其總成本為,其中固定成本為800萬元,并且每生產(chǎn)1萬臺的生產(chǎn)成本為1000萬元(總成本=固定成本+生產(chǎn)成本),銷售收入萬元滿足

1)將利潤表示為產(chǎn)量萬臺的函數(shù);

2)當產(chǎn)量為何值時,公司所獲利潤最大?最大利潤為多少萬元?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖:在五面體中,四邊形是正方形, ,

(1)證明:為直角三角形;

(2)已知四邊形是等腰梯形,且,求五面體的體積.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)若函數(shù)存在5個零點,則實數(shù)的取值范圍為________.

查看答案和解析>>

同步練習冊答案