分析 作出不等式對應(yīng)的平面區(qū)域,利用數(shù)形結(jié)合求出目標(biāo)函數(shù)的最大值和最小值,即可得到結(jié)論.
解答 解:作出不等式組對應(yīng)的平面區(qū)域如圖:(陰影部分)
由z=2x+y得y=-2x+z,
平移直線y=-2x+z,
由圖象可知當(dāng)直線y=-2x+z經(jīng)過點C時,直線y=-2x+z的截距最大,
此時z最大.
由$\left\{\begin{array}{l}{x+y=4}\\{x-y-2=0}\end{array}\right.$,解得$\left\{\begin{array}{l}{x=3}\\{y=1}\end{array}\right.$,即C(3,1),
代入目標(biāo)函數(shù)z=2x+y得z=2×3+1=7.即a=7
當(dāng)直線y=-2x+z經(jīng)過點A(1,-1)時,直線y=-2x+z的截距最小,
此時z最。肽繕(biāo)函數(shù)z=2x+y得z=2×1-1=1.
在目標(biāo)函數(shù)z=2x+y的最小值為1.即b=1,
則a+b=7+1=8,
故答案為:8.
點評 本題主要考查線性規(guī)劃的應(yīng)用,結(jié)合目標(biāo)函數(shù)的幾何意義,利用數(shù)形結(jié)合的數(shù)學(xué)思想是解決此類問題的基本方法.
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 2005 | B. | 2006 | C. | 2007 | D. | 2008 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{π}{4}$ | B. | $\frac{π}{2}$ | C. | π | D. | 4π |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | a | B. | ±a | C. | -a | D. | a2 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | {x|0<x<1} | B. | {x|0≤x≤1} | C. | {x|x≤1} | D. | {x|x≥0} |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com