5.函數(shù)y=$\frac{{x}^{2}+{a}^{2}}{x}$(a>0)的導(dǎo)數(shù)為0,那么x等于( 。
A.aB.±aC.-aD.a2

分析 先化簡,再求導(dǎo),令導(dǎo)數(shù)為0,求得x的值.

解答 解:函數(shù)y=$\frac{{x}^{2}+{a}^{2}}{x}$=x+$\frac{{a}^{2}}{x}$(a>0),
∴$y′=1-\frac{{a}^{2}}{{x}^{2}}$,
令y′=0,
∴x=±a,
故答案選:B.

點評 本題考查求函數(shù)的導(dǎo)數(shù),屬于基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.已知函數(shù)f(x)=$\left\{\begin{array}{l}{\sqrt{x}+3,}&{x≥0}\\{ax+b,}&{x<0}\end{array}\right.$ 滿足條件,對于?x1∈R,存在唯一的x2∈R,使得f(x1)=f(x2).當(dāng)f(2a)=f(3b)成立時,則實數(shù)a+b=( 。
A.$\frac{\sqrt{6}}{2}$B.-$\frac{\sqrt{6}}{2}$C.$\frac{\sqrt{6}}{2}$+3D.-$\frac{\sqrt{6}}{2}$+3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

16.化簡下列各式:
(1)$\frac{cosα-sinα}{1-tanα}$;(2)$\frac{2co{s}^{2}α-1}{1-2si{n}^{2}α}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.將函數(shù)y=sin(x-$\frac{π}{6}$)的圖象上所有點的橫坐標(biāo)縮短到原來的 $\frac{1}{2}$倍(縱坐標(biāo)不變),再將所得函數(shù)的圖象向左平移$\frac{π}{6}$個單位,最后所得到的圖象對應(yīng)的解析式是(  )
A.y=sin$\frac{1}{2}$xB.y=sin($\frac{1}{2}$x-$\frac{π}{6}$)C.y=sin2xD.y=sin(2x+$\frac{π}{6}$)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

20.若直線(3-a)x+(2a-1)y+7=0與直線(2a+1)x+(a+5)y-6=0互相垂直,則a的值為$\frac{1}{7}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

5.已知x,y滿足$\left\{\begin{array}{l}x≥1\\ x+y≤4\\ x-y-2≤0\end{array}\right.$,記目標(biāo)函數(shù)z=2x+y的最大值為a,最小值為b,則a+b=8.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

12.若向量$\overrightarrow a=(cosθ{,_{\;}}sinθ)$,$\overrightarrow b=(\sqrt{3}{,_{\;}}-1)$.
(1)若$\overrightarrow a⊥\overrightarrow{b,}$且$θ∈(0,\frac{π}{2})$,求θ的值;
(2)若θ∈[0,π],求$|2\overrightarrow a-\overrightarrow b|$的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.已知到定點M(a,0)與N(2,0)的斜率之積為$\frac{1}{2}$的點的軌跡方程為x2-2y2=4(x≠±2),則實數(shù)a的值( 。
A.2B.-2C.1D.-1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

10.x∈R時,如果函數(shù)f(x)>g(x)恒成立,那么稱函數(shù)f(x)是函數(shù)g(x)的“優(yōu)越函數(shù)”.若函數(shù)f(x)=2x2+x+2-|2x+1|是函數(shù)g(x)=|x-m|的“優(yōu)越函數(shù)”,則實數(shù)m的取值范圍是$-\frac{1}{2}<m<1$.

查看答案和解析>>

同步練習(xí)冊答案