【題目】已知橢圓的方程為,離心率,且短軸長為4.

求橢圓的方程;

已知,,若直線l與圓相切,且交橢圓EC、D兩點,記的面積為,記的面積為,求的最大值.

【答案】(1);(2)12

【解析】

根據(jù)題意列出有關(guān)ab、c的方程組,求出a、b、c的值,可得出橢圓E的方程;設(shè)直線l的方程為,先利用原點到直線l的距離為2,得出mk滿足的等式,并將直線l的方程與橢圓E的方程聯(lián)立,列出韋達定理,計算出弦CD的長度的表達式,然后分別計算點A、B到直線l的距離、,并利用三角形的面積公式求出的表達式,通過化簡,利用基本不等式可求出的最大值。

解:設(shè)橢圓的焦距為,橢圓的短軸長為,則,

由題意可得,解得,

因此,橢圓的方程為;

由題意知,直線l的斜率存在且斜率不為零,不妨設(shè)直線l的方程為,設(shè)點、,

由于直線l與圓,則有,所以,

A到直線l的距離為,點B到直線l的距離為,

將直線l的方程與橢圓E的方程聯(lián)立,消去y并整理得

由韋達定理可得,

由弦長公式可得

所以,,

當(dāng)且僅當(dāng)時,即當(dāng)時,等號成立.

因此,的最大值為12.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某年數(shù)學(xué)競賽請自以為來自X星球的選手參加填空題比賽,共10道題目,這位選手做題有一個古怪的習(xí)慣:先從最后一題(第10題)開始往前看,凡是遇到會的題就作答,遇到不會的題目先跳過(允許跳過所有的題目),一直看到第1題;然后從第1題開始往后看,凡是遇到先前未答的題目就隨便寫個答案,遇到先前已答的題目則跳過(例如,他可以按照9,8,7,4,3,2,1,5,6,10的次序答題),這樣所有的題目均有作答,設(shè)這位選手可能的答題次序有n種,則n的值為(

A.512B.511C.1024D.1023

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,四棱錐中,底面是正方形,且四個側(cè)面均為等邊三角形.延長至點使,連接,.

1)證明:;

2)求二面角平面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知, , .

1)若的充分不必要條件,求實數(shù)的取值范圍;

(2)若,為真命題,“”為假命題,求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】1642年,帕斯卡發(fā)明了一種可以進行十進制加減法的機械計算機年,萊布尼茨改進了帕斯卡的計算機,但萊布尼茲認為十進制的運算在計算機上實現(xiàn)起來過于復(fù)雜,隨即提出了“二進制”數(shù)的概念之后,人們對進位制的效率問題進行了深入的研究研究方法如下:對于正整數(shù),,我們準(zhǔn)備張不同的卡片,其中寫有數(shù)字0,1,…,的卡片各有如果用這些卡片表示進制數(shù),通過不同的卡片組合,這些卡片可以表示個不同的整數(shù)例如,時,我們可以表示出個不同的整數(shù)假設(shè)卡片的總數(shù)為一個定值,那么進制的效率最高則意味著張卡片所表示的不同整數(shù)的個數(shù)最大根據(jù)上述研究方法,幾進制的效率最高?  

A. 二進制 B. 三進制 C. 十進制 D. 十六進制

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在三棱錐P-ABC中,D,E,F分別為棱PC,AC,AB的中點,PA⊥平面ABC,∠ABC90°,ABPA6,BC8,則(

A.三棱錐D-BEF的體積為6

B.直線PB與直線DF垂直

C.平面DEF截三棱錐P-ABC所得的截面面積為12

D.P與點A到平面BDE的距離相等

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】田忌賽馬是史記中記載的一個故事,說的是齊國將軍田忌經(jīng)常與齊國眾公子賽馬,孫臏發(fā)也們的馬腳力都差不多,都分為上、中、下三等于是孫臏給田忌將軍制定了一個必勝策略:比賽即將開始時,他讓田忌用下等馬對戰(zhàn)公子們的上等馬,用上等馬對戰(zhàn)公子們的中等馬,用中等馬對戰(zhàn)公子們的下等馬,從而使田忌贏得公子們許多賭注假設(shè)田忌的各等級馬與某公子的各等級馬進行一場比賽獲勝的概率如表所示:

田忌的馬獲勝概率公子的馬

上等馬

中等馬

下等馬

上等馬

1

中等馬

下等馬

0

比賽規(guī)則規(guī)定:一次比由三場賽馬組成,每場由公子和田忌各出一匹馬出騫,結(jié)果只有勝和負兩種,并且毎一方三場賽馬的馬的等級各不相同,三場比賽中至少獲勝兩場的一方為最終勝利者.

如果按孫臏的策略比賽一次,求田忌獲勝的概率;

如果比賽約定,只能同等級馬對戰(zhàn),每次比賽賭注1000金,即勝利者贏得對方1000金,每月比賽一次,求田忌一年賽馬獲利的數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某大型商場的空調(diào)在1月到5月的銷售量與月份相關(guān),得到的統(tǒng)計數(shù)據(jù)如下表:

月份

1

2

3

4

5

銷量(百臺)

0.6

0.8

1.2

1.6

1.8

(1)經(jīng)分析發(fā)現(xiàn)1月到5月的銷售量可用線性回歸模型擬合該商場空調(diào)的月銷量(百件)與月份之間的相關(guān)關(guān)系.請用最小二乘法求關(guān)于的線性回歸方程,并預(yù)測6月份該商場空調(diào)的銷售量;

(2)若該商場的營銷部對空調(diào)進行新一輪促銷,對7月到12月有購買空調(diào)意愿的顧客進行問卷調(diào)查.假設(shè)該地擬購買空調(diào)的消費群體十分龐大,經(jīng)過營銷部調(diào)研機構(gòu)對其中的500名顧客進行了一個抽樣調(diào)查,得到如下一份頻數(shù)表:

有購買意愿對應(yīng)的月份

7

8

9

10

11

12

頻數(shù)

60

80

120

130

80

30

現(xiàn)采用分層抽樣的方法從購買意愿的月份在7月與12月的這90名顧客中隨機抽取6名,再從這6人中隨機抽取3人進行跟蹤調(diào)查,求抽出的3人中恰好有2人是購買意愿的月份是12月的概率.

參考公式與數(shù)據(jù):線性回歸方程,其中,.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】下列函數(shù)既是奇函數(shù),又在上單調(diào)遞增的是  

A. B.

C. D.

查看答案和解析>>

同步練習(xí)冊答案