(本小題滿分12分)已知圓
,圓
,動圓
與圓
外切并且與圓
內(nèi)切,圓心
的軌跡為曲線
。
(Ⅰ)求
的方程;
(Ⅱ)
是與圓
,圓
都相切的一條直線,
與曲線
交于
,
兩點,當圓
的半徑最長是,求
。
依題意,圓M的圓心
,圓N的圓心
,故
,由橢圓定理可知,曲線C是以M、N為左右焦點的橢圓(左頂點除外),其方程為
;
(2)對于曲線C上任意一點
,由于
(R為圓P的半徑),所以R=2,所以當圓P的半徑最長時,其方程為
;
若直線l垂直于x軸,易得
;
若直線l不垂直于x軸,設l與x軸的交點為Q,則
,解得
,故直線l:
;有l(wèi)與圓M相切得
,解得
;當
時,直線
,聯(lián)立直線與橢圓的方程解得
;同理,當
時,
.
(1)根據(jù)橢圓的定義求出方程;(2)先確定當圓P的半徑最長時,其方程為
,再對直線l進行分類討論求弦長.
本題考查橢圓的定義、弦長公式、直線的方程,考查學生的運算能力、化簡能力以及數(shù)形結合的能力.
練習冊系列答案
相關習題
科目:高中數(shù)學
來源:不詳
題型:解答題
已知橢圓的一個頂點為
,焦點在
軸上,若右焦點到直線
的距離為3.
(1)求橢圓的標準方程;
(2)設直線
與橢圓相交于不同的兩點
、
,當
時,求
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:解答題
已知橢圓:
,離心率為
,焦點
過
的直線交橢圓于
兩點,且
的周長為4.
(Ⅰ)求橢圓方程;
(Ⅱ) 直線
與y軸交于點P(0,m)(m
0),與橢圓C交于相異兩點A,B且
.若
,求m的取值范圍。
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:解答題
已知橢圓
方程為
,過右焦點斜率為1的直線到原點的距離為
.
(1)求橢圓方程.
(2)已知
為橢圓的左右兩個頂點,
為橢圓在第一象限內(nèi)的一點,
為過點
且垂直
軸的直線,點
為直線
與直線
的交點,點
為以
為直徑的圓與直線
的一個交點,求證:
三點共線.
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:解答題
已知橢圓
的中心在坐標原點,右準線為
,離心率為
.若直線
與橢圓
交于不同的兩點
、
,以線段
為直徑作圓
.
(1)求橢圓
的標準方程;
(2)若圓
與
軸相切,求圓
被直線
截得的線段長.
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:解答題
已知橢圓
的中心在原點,焦點在
軸上,離心率
,它的一個頂點恰好是拋物線
的焦點.
(Ⅰ)求橢圓
的方程;
(Ⅱ)設橢圓
與曲線
的交點為
、
,求
面積的最大值.
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:填空題
已知橢圓與
軸相切,左、右兩個焦點分別為
,則原點O到其左準線的距離為
.
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:單選題
設F
1(-c, 0), F
2(c, 0)是橢圓
(a>b>0)的兩個焦點,P是以|F
1F
2|為直徑的圓與橢圓的一個交點,且∠PF
1F
2=5∠PF
2F
1,則該橢圓的離心率為( )
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:單選題
橢圓
上一點M到焦點F
1的距離為2,N是MF
1的中點.則|ON|等于( )
A.2 | B.4 | C.8 | D. |
查看答案和解析>>