已知A={x|log2x<2},B={x|
1
3
<3x
3
},則A∩B為( 。
A、(0,
1
2
B、(0,
2
C、(-1,
1
2
D、(-1,
2
考點(diǎn):交集及其運(yùn)算
專題:集合
分析:求出A與B中不等式的解集確定出A與B,找出兩集合的交集即可.
解答: 解:由A中的不等式變形得:log2x<2=log24,解得:0<x<4},即A=(0,4),
由B中不等式變形得:3-1=
1
3
<3x
3
=3
1
2
,解得:-1<x<
1
2
,即B=(-1,
1
2
),
則A∩B=(0,
1
2
).
故選:A.
點(diǎn)評(píng):此題考查了交集及其運(yùn)算,熟練掌握交集的定義是解本題的關(guān)鍵.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)(x∈R)的圖象上任一點(diǎn)(x0,y0)處切線的方程為:y-y0=(x0-2)( x0-1)(x-x0),那么函數(shù)f(x)的單調(diào)減區(qū)間是( 。
A、(1,2)
B、(-∞,1]
C、[2,+∞)
D、(-∞,-1)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在復(fù)平面內(nèi),復(fù)數(shù)
2
1-i
-i3對(duì)應(yīng)的點(diǎn)位于( 。
A、第一象限B、第二象限
C、第三象限D、第四象限

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=ax2+bx+c(a,b,c∈R,a<0)對(duì)于一切實(shí)數(shù)x都有f(1-x)=f(1+x),而且f(-1)<0,f(0)>0,則有( 。
A、a+b+c<0
B、c<2b
C、abc>0
D、b<a+c

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知
1
2
sin(π-2x)-1=cos2x(0<x<π),則tan2x的值是( 。
A、-
4
3
B、
4
3
C、-
2
3
D、
2
3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在三棱椎P-ABC中,PA⊥平面ABC,AC⊥BC,D為側(cè)棱PC上的一點(diǎn),它的正視圖和側(cè)視圖如圖所示,則下列命題正確的是(  )
A、AD⊥平面PBC且三棱椎D-ABC的體積為
8
3
B、BD⊥平面PAC且三棱椎D-ABC的體積為
8
3
C、AD⊥平面PBC且三棱椎D-ABC的體積為
16
3
D、BD⊥平面PAC且三棱椎D-ABC的體積為
16
3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

某校高三有800名同學(xué)參加學(xué)校組織的數(shù)學(xué)學(xué)科競賽,其成績的頻率分布直方圖如圖所示,規(guī)定95分及其以上為一等獎(jiǎng).
區(qū)間 [75,80) [80,85) [85,90) [90,95) [95,100]
人數(shù) 40 a 280 240 b
(Ⅰ)上表是這次考試成績的頻數(shù)分布表,求正整數(shù)a,b的值;
(Ⅱ)現(xiàn)在要用分層抽樣的方法從這800人中抽取40人的成績進(jìn)行分析,求其中獲二等獎(jiǎng)的學(xué)生人數(shù);
(Ⅲ)在(Ⅱ)中抽取的40名學(xué)生中,要隨機(jī)選取2名學(xué)生參加市全省數(shù)學(xué)學(xué)科競賽,記“其中一等獎(jiǎng)的人數(shù)”為X,求X的分布列與數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

數(shù)列{an}滿足a1=t,an+1=
tan
an+1
,其中t>0.
(Ⅰ)當(dāng)t=1時(shí),求證數(shù)列{
1
an
}是等差數(shù)列;
(Ⅱ)當(dāng)t≠1時(shí),求證數(shù)列{
1
an
-
1
t-1
}是等比數(shù)列,并求出數(shù)列{an}的通項(xiàng)公式;
(Ⅲ)試證明:對(duì)于一切正整數(shù)n,不等式2nan≤tn+1+1均成立.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)r(x)=lnx,函數(shù)h(x)=
1
a
(1-
1
x
)(a>0),f(x)=r(x)-h(x)

(Ⅰ)試求f(x)的單調(diào)區(qū)間.
(Ⅱ)若f(x)在區(qū)間[1,+∞)上是單調(diào)遞增函數(shù),試求實(shí)數(shù)a的取值范圍:
(Ⅲ)設(shè)數(shù)列{an}是公差為1.首項(xiàng)為l的等差數(shù)列,數(shù)列{
1
an
}
的前n項(xiàng)和為Sn,求證:當(dāng)a=1時(shí),Sn-2<f(n)-
1
n
Sn-1-1(n∈N*,n≥2)

查看答案和解析>>

同步練習(xí)冊(cè)答案