【題目】在①,②,③這三個(gè)條件中任選一個(gè),補(bǔ)充在下面問題中,并解決問題.
已知,,,__________,求.
注:如果選擇多個(gè)條件分別解答,按第一個(gè)解答計(jì)分.
【答案】見解析
【解析】
①②③任選一個(gè)條件,均可求出,求出,利用,結(jié)合兩角差的余弦公式,即可求解.
解:方案一:選條件①
解法一:因?yàn)?/span>,所以.
由平方關(guān)系,
解得 或
因?yàn)?/span>,所以.
因?yàn)?/span>,由平方關(guān)系,
解得.
因?yàn)?/span>,所以,
所以,
所以
.
解法二:因?yàn)?/span>,
所以點(diǎn)在角的終邊上,
所以,
.
以下同解法一.
方案二:選條件②
因?yàn)?/span>,所以,
因?yàn)?/span>,所以,所以.
由平方關(guān)系,解得.
因?yàn)?/span>,所以.
以下同方案一的解法一.
方案三:選條件③
因?yàn)?/span>,所以.
由平方關(guān)系,得.
因?yàn)?/span>,所以.
以下同方案一的解法一.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù).
(Ⅰ)討論函數(shù)的單調(diào)性;
(Ⅱ)設(shè),若對(duì)任意的,恒成立,求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某家庭進(jìn)行理財(cái)投資,有兩種方式,甲為投資債券等穩(wěn)健型產(chǎn)品,乙為投資股票等風(fēng)險(xiǎn)型產(chǎn)品,設(shè)投資甲、乙兩種產(chǎn)品的年收益分別為、萬元,根據(jù)長(zhǎng)期收益率市場(chǎng)預(yù)測(cè),它們與投入資金萬元的關(guān)系分別為,,(其中,,都為常數(shù)),函數(shù),對(duì)應(yīng)的曲線,如圖所示.
(1)求函數(shù)、的解析式;
(2)若該家庭現(xiàn)有萬元資金,全部用于理財(cái)投資,問:如何分配資金能使一年的投資獲得最大收益,其最大收益是多少萬元?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某城市有210家百貨商店,其中大型商店20家,中型商店40家,小型商店150家.為了掌握各商店的營(yíng)業(yè)情況,計(jì)劃抽取一個(gè)容量為21的樣本,應(yīng)采用怎樣的抽樣方法?并寫出抽樣過程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在底面是菱形的四棱錐中, 平面, ,點(diǎn)分別為的中點(diǎn),設(shè)直線與平面交于點(diǎn).
(1)已知平面平面,求證: .
(2)求直線與平面所成角的正弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某公司為了解廣告投入對(duì)銷售收益的影響,在若干地區(qū)各投入萬元廣告費(fèi)用,并將各地的銷售收益繪制成頻率分布直方圖(如圖所示).由于工作人員操作失誤,橫軸的數(shù)據(jù)丟失,但可以確定橫軸是從開始計(jì)數(shù)的. [附:回歸直線的斜率和截距的最小二乘估計(jì)公式分別為.]
(1)根據(jù)頻率分布直方圖計(jì)算圖中各小長(zhǎng)方形的寬度;
(2)試估計(jì)該公司投入萬元廣告費(fèi)用之后,對(duì)應(yīng)銷售收益的平均值(以各組的區(qū)間中點(diǎn)值代表該組的取值);
(3)該公司按照類似的研究方法,測(cè)得另外一些數(shù)據(jù),并整理得到下表:
廣告投入 (單位:萬元) | 1 | 2 | 3 | 4 | 5 |
銷售收益 (單位:萬元) | 2 | 3 | 2 | 7 |
由表中的數(shù)據(jù)顯示, 與之間存在著線性相關(guān)關(guān)系,請(qǐng)將(2)的結(jié)果填入空白欄,并求出關(guān)于的回歸直線方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】.根據(jù)下列條件,確定是第幾象限角.
(1)與異號(hào);
(2)與同號(hào);
(3)與異號(hào);
(4)與同號(hào).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù) ,則函數(shù)g(x)=xf(x)﹣1的零點(diǎn)的個(gè)數(shù)為( 。
A. 2B. 3C. 4D. 5
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com