【題目】已知函數(shù) ,則函數(shù)g(x)=xf(x)﹣1的零點的個數(shù)為( 。

A. 2B. 3C. 4D. 5

【答案】B

【解析】

gx)=xfx)﹣10fx,根據(jù)條件作出函數(shù)fx)與hx的圖象,研究兩個函數(shù)的交點個數(shù)即可得到結(jié)論.

gx)=xfx)﹣10xfx)=1,

當(dāng)x0時,方程xfx)=1不成立,即x0

則等價為fx)=,

當(dāng)2x4時,0x22,此時fx)=fx2)=1|x21|)=|x3|,

當(dāng)4x6時,2x24,此時fx)=fx2)= [|x23|]|x5|,

作出fx)的圖象如圖,

f1)=1,f3)=f1)=,f5)=f3)=,

設(shè)hx)= ,

h1)=1,h3)=h5)=f5),

作出hx)的圖象,由圖象知兩個函數(shù)圖象有3個交點,

即函數(shù)gx)的零點個數(shù)為3個,

故選:B

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在①,②,③這三個條件中任選一個,補(bǔ)充在下面問題中,并解決問題.

已知,,,__________,求.

注:如果選擇多個條件分別解答,按第一個解答計分.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f (x)=x-(a+1)ln x-(a∈R),g (x)=x2+ex-xex.

(1)當(dāng)x∈[1,e] 時,求f (x)的最小值;

(2)當(dāng)a<1時,若存在x1∈[e,e2],使得對任意的x2∈[-2,0],f (x1)<g (x2)恒成立,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在同一坐標(biāo)系中,函數(shù)y=ax+ay=ax的圖象大致是( 。

A. B.

C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】找一組數(shù)據(jù)作為總體,自行設(shè)定樣本量,進(jìn)行多次簡單隨機(jī)抽樣.觀察樣本量對估計總體平均數(shù)的影響,并試著解釋其中的原因.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某廠生產(chǎn)某種產(chǎn)品的年固定成本為250萬元,每生產(chǎn)千件,需另投入成本,當(dāng)年產(chǎn)量不足80千件時,(萬元);當(dāng)年產(chǎn)量不小于80千件時,(萬元),每件售價為0.05萬元,通過市場分析,該廠生產(chǎn)的商品能全部售完.

1)寫出年利潤(萬元)關(guān)于年產(chǎn)量(千件)的函數(shù)解析式;

2)年產(chǎn)量為多少千件時,該廠在這一商品的生產(chǎn)中所獲利潤最大?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)a為實數(shù),函數(shù),

,求不等式的解集;

是否存在實數(shù)a,使得函數(shù)在區(qū)間上既有最大值又有最小值?若存在,求出實數(shù)a的取值范圍;若不存在,請說明理由;

寫出函數(shù)R上的零點個數(shù)不必寫出過程

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】(本小題滿分16分)已知為實數(shù),函數(shù),函數(shù)

1)當(dāng)時,令,求函數(shù)的極值;

2)當(dāng)時,令,是否存在實數(shù),使得對于函數(shù)定義域中的任意實數(shù),均存在實數(shù),有成立,若存在,求出實數(shù)的取值集合;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】ABC中,角A,B,C所對的邊分別為a,b,c,且acosC+ccosA=2bcosA.
(1)求角A的值;
(2)若, ,求ABC的面積S.

查看答案和解析>>

同步練習(xí)冊答案