【題目】已知函數(shù)

)當(dāng)時(shí),求在區(qū)間上的取值范圍.

)當(dāng)時(shí),,求的值.

【答案】1)當(dāng)m=0時(shí),

,由已知,得

從而得:的值域?yàn)?/span>

2

化簡(jiǎn)得:

當(dāng),得:,

代入上式,m=-2.

【解析】

試題(1)把m=0代入到fx)中,然后分別利用同角三角函數(shù)間的基本關(guān)系、二倍角的正弦、余弦函數(shù)公式以及特殊角的三角函數(shù)值把fx)化為一個(gè)角的正弦函數(shù),利用x的范圍求出此正弦函數(shù)角的范圍,根據(jù)角的范圍,利用正弦函數(shù)的圖象即可得到fx)的值域;

2)把fx)的解析式利用二倍角的正弦、余弦函數(shù)公式及積化和差公式化簡(jiǎn)得到關(guān)于sin2xcos2x的式子,把x換成α,根據(jù)tanα的值,利用同角三角函數(shù)間的基本關(guān)系以及二倍角的正弦函數(shù)公式化簡(jiǎn)求出sin2αcos2α的值,把sin2αcos2α的值代入到fα=中得到關(guān)于m的方程,求出m的值即可.

試題解析:(1)當(dāng)m=0時(shí),f(x)(1+)sin2xsin2x+sinxcosx,由已知,得,從而得的值域?yàn)?/span>[0].

f(x)(1)sin2xmsin(x)sin(x)

,所以,當(dāng),得,代入式得

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在圓心角為,半徑為的扇形鐵皮上截取一塊矩形材料,其中點(diǎn)為圓心,點(diǎn)在圓弧上,點(diǎn)在兩半徑上,現(xiàn)將此矩形鐵皮卷成一個(gè)以為母線的圓柱形鐵皮罐的側(cè)面(不計(jì)剪裁和拼接損耗),設(shè)矩形的邊長(zhǎng),圓柱形鐵皮罐的容積為.

(1)求圓柱形鐵皮罐的容積關(guān)于的函數(shù)解析式,并指出該函數(shù)的定義域;

(2)當(dāng)為何值時(shí),才使做出的圓柱形鐵皮罐的容積最大?最大容積是多少? (圓柱體積公式:,為圓柱的底面枳,為圓柱的高)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】下列說(shuō)法正確的是(
A.“sinα= ”是“cos2α= ”的必要不充分條件
B.已知命題p:?x∈R,使2x>3x;命題q:?x∈(0,+∞),都有 ,則p∧(¬q)是真命題
C.命題“若xy=0,則x=0或y=0”的否命題是“若xy≠0,則x≠0或y≠0”
D.從勻速傳遞的生產(chǎn)流水線上,質(zhì)檢員每隔5分鐘從中抽取一件產(chǎn)品進(jìn)行某項(xiàng)指標(biāo)檢測(cè),這是分成抽樣

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知f(x)= sinxcosx+cos2x,銳角△ABC的三個(gè)角A,B,C所對(duì)的邊分別為a,b,c. (Ⅰ)求函數(shù)f(x)的最小正周期和單調(diào)遞增區(qū)間;
(Ⅱ)若f(C)=1,求m= 的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,AB是⊙O的直徑,C是圓周上不同于A,B的任意一點(diǎn),PA⊥平面ABC,則四面體P-ABC的四個(gè)面中,直角三角形的個(gè)數(shù)有( 。

A. 4個(gè)B. 3個(gè)C. 2個(gè)D. 1個(gè)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù).

(1)討論函數(shù)的單調(diào)性;

(2)當(dāng)時(shí),求函數(shù)在區(qū)間上的最值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在△ABC中,角A,BC的對(duì)邊分別為a,b,c,且滿足(2a-bcosC-ccosB=0

(Ⅰ)求角C的值;

(Ⅱ)若三邊a,bc滿足a+b=13,c=7,求△ABC的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù),.

(1)求函數(shù)的最小正周期;

(2)若存在,使不等式成立,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】橢圓一個(gè)焦點(diǎn)為,離心率

Ⅰ)求橢圓的方程式.

Ⅱ)定點(diǎn),為橢圓上的動(dòng)點(diǎn),求的最大值;并求出取最大值時(shí)點(diǎn)的坐標(biāo)求.

Ⅲ)定直線為橢圓上的動(dòng)點(diǎn),證明點(diǎn)的距離與到定直線的距離的比值為常數(shù),并求出此常數(shù)值.

查看答案和解析>>

同步練習(xí)冊(cè)答案