分析 (1)求出函數(shù)的導(dǎo)數(shù),通過討論a的范圍求出函數(shù)的單調(diào)區(qū)間,從而求出函數(shù)的極值即可;
(2)問題轉(zhuǎn)化為2lna≤lna+1,求出a的范圍即可.
解答 解:(1)f(x)=lnx+$\frac{a}{x}$,(x>0),
f′(x)=$\frac{1}{x}$-$\frac{a}{{x}^{2}}$=$\frac{x-a}{{x}^{2}}$,(x>0),
當(dāng)a≤0時(shí),f′(x)>0,f(x)在(0,+∞)上遞增;無(wú)極值;
當(dāng)a>0時(shí),0<x<a時(shí),f′(x)<0,f(x)在(0,a)上遞減,
x>a時(shí),f′(x)>0,f(x)在(a,+∞)上遞增,
f(x)極小值=f(a)=lna+1;
(2)若對(duì)任意x>0,均有x(2lna-lnx)≤a恒成立,
即對(duì)任意x>0,均有2lna≤lnx+$\frac{a}{x}$恒成立,
由(1)得:f(x)的最小值是lna+1,
故問題轉(zhuǎn)化為:2lna≤lna+1,即lna≤1,
故0<a≤$\frac{1}{e}$.
點(diǎn)評(píng) 本題考查了函數(shù)的單調(diào)性、極值問題,考查導(dǎo)數(shù)的應(yīng)用以及分類討論思想,考查轉(zhuǎn)化思想,是一道中檔題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | $\sqrt{2}$ | B. | 1 | C. | 2 | D. | $\sqrt{3}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | (2k-$\frac{2}{3}$,2k+$\frac{4}{3}$),k∈Z | B. | (2kπ-$\frac{2}{3}$π,2kπ+$\frac{4}{3}$π),k∈Z | ||
C. | (4k-$\frac{2}{3}$,4k+$\frac{4}{3}$),k∈Z | D. | (4kπ-$\frac{2}{3}$π,4kπ+$\frac{4}{3}$π),k∈Z |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | (1,2) | B. | (1,$\frac{3\sqrt{2}}{4}$] | C. | (2,+∞) | D. | [$\frac{3\sqrt{2}}{4}$,+∞) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com