20.已知拋物線C:y2=2px(p>0)的焦點(diǎn)為F,以拋物線C上的點(diǎn)M(x0,2$\sqrt{2}$)(x0>$\frac{p}{2}$)為圓心的圓與線段MF相交于點(diǎn)A,且被直線x=$\frac{p}{2}$截得的弦長(zhǎng)為$\sqrt{3}$|$\overrightarrow{MA}$|,若$\frac{|\overrightarrow{MA|}}{|\overrightarrow{AF|}}$=2,則|$\overrightarrow{AF}$|=1.

分析 由題意,|MF|=x0+$\frac{p}{2}$.利用圓M與線段MF相交于點(diǎn)A,且被直線x=$\frac{p}{2}$截得的弦長(zhǎng)為$\sqrt{3}$|$\overrightarrow{MA}$|,可得|MA|=2(x0-$\frac{p}{2}$),利用$\frac{|\overrightarrow{MA|}}{|\overrightarrow{AF|}}$=2,求出x0,p,即可求出|$\overrightarrow{AF}$|.

解答 解:由題意,|MF|=x0+$\frac{p}{2}$.
∵圓M與線段MF相交于點(diǎn)A,且被直線x=$\frac{p}{2}$截得的弦長(zhǎng)為$\sqrt{3}$|$\overrightarrow{MA}$|,
∴|MA|=2(x0-$\frac{p}{2}$),
∵$\frac{|\overrightarrow{MA|}}{|\overrightarrow{AF|}}$=2,
∴|MF|=$\frac{3}{2}$|MA|,
∴x0=p,
∴2p2=8,∴p=2,
∴|$\overrightarrow{AF}$|=1.
故答案為1.

點(diǎn)評(píng) 本題考查拋物線的方程與定義,考查直線與圓的位置關(guān)系,考查學(xué)生的計(jì)算能力,屬于中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

14.在△ABC中,內(nèi)角A,B,C的對(duì)邊分別為a,b,c,若$\frac{tanA-tanB}{tanA+tanB}$=$\frac{c-b}{c}$,則這個(gè)三角形必含有( 。
A.90°的內(nèi)角B.60°的內(nèi)角C.45°的內(nèi)角D.30°的內(nèi)角

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

11.設(shè)數(shù)列{an}滿足an+1=an2-an+1(n∈N*),Sn為{an}的前n項(xiàng)和.證明:對(duì)任意n∈N*,
(I)當(dāng)0≤a1≤1時(shí),0≤an≤1;
(II)當(dāng)a1>1時(shí),an>(a1-1)a1n-1;
(III)當(dāng)a1=$\frac{1}{2}$時(shí),n-$\sqrt{2n}$<Sn<n.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

8.已知f(x)=lnx+$\frac{a}{x}$.
(1)求f(x)的單調(diào)區(qū)間和極值;
(2)若對(duì)任意x>0,均有x(2lna-lnx)≤a恒成立,求正數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

15.定義在R上的函數(shù)f(x)的導(dǎo)函數(shù)為f'(x),f(0)=0若對(duì)任意x∈R,都有f(x)>f'(x)+1,則使得f(x)+ex<1成立的x的取值范圍為( 。
A.(0,+∞)B.(-∞,0)C.(-1,+∞)D.(-∞,1)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

5.設(shè)函數(shù)f′(x)是定義(0,2π)在上的函數(shù)f(x)的導(dǎo)函數(shù),f(x)=f(2π-x),當(dāng)0<x<π時(shí),若f(x)sinx-f′(x)cosx<0,a=$\frac{1}{2}$f($\frac{π}{3}$),b=0,c=-$\frac{{\sqrt{3}}}{2}$f($\frac{7π}{6}$),則( 。
A.a<b<cB.b<c<aC.c<b<aD.c<a<b

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

12.已知函數(shù)$f(x)=|{2x-1}|+x+\frac{1}{2}$的最小值為m.
(1)求m的值;
(2)若a,b,c是正實(shí)數(shù),且a+b+c=m,求證:2(a3+b3+c3)≥ab+bc+ca-3abc.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

9.已知集合A={-2,-1,0,1,2},B={x|-2<x≤2},則A∩B=( 。
A.{-1,0,1,2}B.{-1,0,1}C.{-2,-1,0,1}D.{-2,-1,0,1,2}

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

10.從{2,3,4,5,6}中隨機(jī)選取一個(gè)數(shù)為a,從{1,2,3,5}中隨機(jī)選取一個(gè)數(shù)為b,則b>a的概率是( 。
A.$\frac{4}{5}$B.$\frac{3}{5}$C.$\frac{2}{5}$D.$\frac{1}{5}$

查看答案和解析>>

同步練習(xí)冊(cè)答案