雙曲線上的點M到點(-5,0)的距離為7,則M到點(5,0)的距離為(  )

A. 1或13             B. 15             C.13            D. 1        

 

【答案】

C

【解析】

試題分析:易知雙曲線的焦點坐標為(5,0),因為點M到點(-5,0)的距離為7<a+c=8,所以點M一定在雙曲線的左之上,設所求距離為d,所以由雙曲線的定義知d-7=6,所以d=13.

考點:本題考查雙曲線的定義。

點評:此題易錯選A,其主要原因是沒判斷出點M在雙曲線的哪一支上。

 

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

已知A(3,0)及雙曲線E:
x2
9
-
y2
16
=1
,若雙曲線E的右支上的點Q到點B(m,0)(m≥3)距離的最小值為|AB|.
(1)求m的取值范圍,并指出當m變化時B的軌跡C
(2)如(圖1),軌跡C上是否存在一點D,它在直線y=
4
3
x
上的射影為P,使得
AP
OD
=
OP
PD
?若存在試指出雙曲線E的右焦點F分向量
AD
所成的比;若不存在,請說明理由.
(3)(理)當m為定值時,過軌跡C上的點B(m,0)作一條直線l與雙曲線E的右支交于不同的兩點(圖2),且與直線y=
4
3
x
,y=-
4
3
x
分別交于M、N兩點,求△MON周長的最小值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

設雙曲線-=-1上的點M到點A(5,0)的距離為25,則M到點B(-5,0)的距離是___________________.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

設雙曲線-=-1上的點M到點A(5,0)的距離為25,則M到點B(-5,0)的距離是___________________.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知A(3,0)及雙曲線E:-=1,若雙曲線E的右支上的點Q到點B(m,0)(m≥3)距離的最小值為|AB|.?

(1)求m的取值范圍,并指出當m變化時點B的軌跡G.

(2)軌跡G上是否存在一點D,它在直線y=x上的射影為P,使得·=·?若存在,試指出雙曲線E的右焦點F分向量所成的比;若不存在,請說明理由.

                 

(3)當m為定值時,過軌跡G上的點B(m,0)作一條直線l與雙曲線E的右支交于不同的兩點,且與直線y=x,y=-x分別交于M,N兩點,求△MON周長的最小值.

查看答案和解析>>

同步練習冊答案