8.如圖,在三棱錐P-ABC中,平面PAC⊥平面ABC,△PAC是等邊三角形,已知BC=2AC=4,AB=2$\sqrt{5}$.
(Ⅰ)求證:平面PAC⊥平面CBP;
(Ⅱ)求二面角A-PB-C的余弦值.

分析 (Ⅰ)根據(jù)面面垂直的判定定理證明BC⊥平面PAC即可證明平面PAC⊥平面CBP;
(Ⅱ)根據(jù)二面角平面角的定義作出二面角的平面角,結(jié)合三角形的邊角關(guān)系即可求二面角A-PB-C的余弦值.

解答 解:(Ⅰ)證明:在△ABC中,由于BC=4,AC=2,AB=2$\sqrt{5}$.
∴AC2+BC2=AB2,故AC⊥BC.
又平面PAC⊥平面ABC,平面PAC∩平面ABC=AC,
BC?平面PBC,
∴BC⊥平面PAC,
BC?⊥平面PBC,
故 平面PAC⊥平面CBP.
(Ⅱ)由(Ⅰ)知BC⊥平面PAC,所以平面PBC⊥平面PAC,過A作AE⊥PC交PC于E,則AE⊥平面PBC,
再過E作EF⊥PB交PB于F,連結(jié)AF,
則∠AFE就是二面角A-PB-C的平面角.
由題設(shè)得AE=$\sqrt{3}$,EF=$\frac{2}{\sqrt{5}}$,
由勾股定理得:AF=$\sqrt{A{E}^{2}+E{F}^{2}}$=$\sqrt{\frac{19}{5}}$,
∴cos∠AFE=$\frac{EF}{AF}=\frac{2}{\sqrt{19}}$=$\frac{2\sqrt{19}}{19}$.
∴二面角A-PB-C的余弦值為$\frac{2\sqrt{19}}{19}$.

點評 本題主要考查面面垂直的判定以及二面角的求解,根據(jù)相應(yīng)的判定定理以及作出二面角的平面角是解決本題的關(guān)鍵.考查學生的推理能力.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:填空題

12.若正數(shù)x,y滿足$\frac{3}{x}$+$\frac{1}{y}$=5,則3x+4y的最小值是5.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

13.在△ABC中,角A,B,C所對的邊分別是a,b,c,且△ABC三邊a,b,c上的高分別為$\frac{1}{13}$,$\frac{1}{11}$,$\frac{1}{5}$,則△ABC為( 。
A.銳角三角形B.直角三角形
C.鈍角三角形D.不存在這樣的三角形

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

10.函數(shù)y=$\frac{1-cosx}{sinx}$為( 。
A.奇函數(shù)B.偶函數(shù)
C.既不是奇函數(shù),也不是偶函數(shù)D.既是奇函數(shù),也是偶函數(shù)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

3.如圖,在棱長為1的正方體ABCD-A1B1C1D1中,P為棱A1B1的中點,點Q在側(cè)面DCC1D1內(nèi)運動,給出下列結(jié)論:
①若BQ⊥A1C,則動點Q的軌跡是線段;
②若|BQ|=$\sqrt{2}$,則動點Q的軌跡是圓的一部分;
③若∠QBD1=∠PBD1,則動點Q的軌跡是橢圓的一部分;
④若點Q到AB與DD1的距離相等,則動點Q的軌跡是拋物線的一部分.
其中結(jié)論正確的是①②(寫出所有正確結(jié)論的序號).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

13.一個幾何體的三視圖如圖所示,設(shè)該幾何體的體積為V,則3(V+$\frac{2π}{3}$-16)的值為( 。
A.$\sqrt{3}$B.2$\sqrt{3}$C.3$\sqrt{3}$D.4$\sqrt{3}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

20.已知某幾何體的三視圖如圖所示,則它的表面積為(  )
A.15πB.16πC.17πD.18π

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

17.如圖,在△ABC中,∠B=90°,AB為直徑的⊙O交AC于D,過點D作⊙O的切線交BC于E,AE交⊙O于點F.
(1)證明:EB=EC;
(2)證明:AD•AC=AE•AF.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

18.已知f(x)是周期為4的偶函數(shù),當x∈[0,2]時f(x)=$\left\{\begin{array}{l}{{x}^{2},0≤x≤1}\\{lo{g}_{2}x+1,1<x≤2}\end{array}\right.$,則f(2014)+f(2015)=( 。
A.0B.1C.2D.3

查看答案和解析>>

同步練習冊答案