A. | 0 | B. | 1 | C. | 2 | D. | 3 |
分析 利用函數(shù)的周期性,化簡所求函數(shù)值的自變量為已知函數(shù)的定義域中,代入求解即可.
解答 解:f(x)是周期為4的偶函數(shù),當(dāng)x∈[0,2]時f(x)=$\left\{\begin{array}{l}{{x}^{2},0≤x≤1}\\{lo{g}_{2}x+1,1<x≤2}\end{array}\right.$,
則f(2014)+f(2015)=f(2012+2)+f(2016-1)=f(2)+f(-1)=log22+1+12=3.
故選:D.
點評 本題考查分段函數(shù)的應(yīng)用,函數(shù)的周期性以及函數(shù)值的求法,考查計算能力.
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{π}{3}$ | B. | $\frac{7π}{6}$ | C. | $\frac{π}{6}$ | D. | $\frac{π}{2}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 存在α∈(0,$\frac{π}{2}$),使sinα+cosα=$\frac{1}{3}$ | |
B. | y=tanx在其定義域內(nèi)為增函數(shù) | |
C. | y=cos2x+sin($\frac{π}{2}$-x)既有最大、最小值,又是偶函數(shù) | |
D. | y=sin|2x+$\frac{π}{6}$|的最小正周期為π |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 2 | B. | $3\sqrt{2}$ | C. | $2\sqrt{7}$ | D. | $3\sqrt{3}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | f(x)=-$\frac{1}{x}$ | B. | f(x)=$\sqrt{x}$ | C. | f(x)=$\frac{1}{{2}^{x-1}}$ | D. | f(x)=-tanx |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com