考點:正弦函數(shù)的圖象,函數(shù)奇偶性的判斷
專題:三角函數(shù)的圖像與性質(zhì)
分析:(1)由條件利用誘導(dǎo)公式求得f(2015π)的值.
(2)由條件根據(jù)f(-x)≠f(x)且f(-x)≠-f(x),可得f(x)=2sin(x+
)為非奇非偶函數(shù).
(3)由條件求得sin
2α=
,再根據(jù) f(
α+)=2cosα=2
,求得結(jié)果.
解答:
解:(1)由于函數(shù)f(x)=2sin(x+
),故f(2015π)=2sin(2015π+
)=2sin(π+
)=-2sin
=-1.
(2)函數(shù)f(x)=2sin(x+
)為非奇非偶函數(shù),
證明:∵f(x)=2sin(x+
),f(-x)=2sin(-x+
)=-2sin(x-
),
∴f(-x)≠f(x)且f(-x)≠-f(x),
故函數(shù)f(x)=2sin(x+
)為非奇非偶函數(shù).
(3)∵α為第四象限的角,且
=
=
=3-4sin
2α,
∴sin
2α=
.
∴f(
α+)=2sin(α+
+
)=2cosα=2
=
.
點評:本題主要考查誘導(dǎo)公式、正弦函數(shù)的奇偶性、同角三角函數(shù)的基本關(guān)系,屬于基礎(chǔ)題.