8.已知函數(shù)f(x)=(x2+x)(x2+ax+b),若對?x∈R,均有f(x)=f(2-x),則f(x)的最小值為-$\frac{9}{4}$.

分析 由f(0)=f(2),f(-1)=f(3)可求得a,b,從而確定函數(shù)f(x),從而求導(dǎo)確定函數(shù)的極值,從而求最小值.

解答 解:∵對?x∈R,均有f(x)=f(2-x),
∴f(0)=f(2),f(-1)=f(3),
即0=6(4+2a+b),0=12(9+3a+b),
解得,a=-5,b=6;
故f(x)=(x2+x)(x2-5x+6),
令f′(x)=(2x+1)(x2-5x+6)+(x2+x)(2x-5)
=(x-1)(2x2-4x-3)=0,
解得,x=1或x=1+$\frac{\sqrt{10}}{2}$或x=1-$\frac{\sqrt{10}}{2}$;
由函數(shù)的對稱性知,
當(dāng)x=1+$\frac{\sqrt{10}}{2}$或x=1-$\frac{\sqrt{10}}{2}$時,函數(shù)f(x)都可以取到最小值,
f(1+$\frac{\sqrt{10}}{2}$)=-$\frac{9}{4}$,
故答案為:-$\frac{9}{4}$.

點評 本題考查了導(dǎo)數(shù)的綜合應(yīng)用及學(xué)生的化簡運算能力,屬于中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

18.將函數(shù)f(x)=sin2x+$\sqrt{3}$cos2x(x∈R)的圖象向左平移m(m>0)個單位長度后,所得的圖象過點(0,1),則m的最小值是$\frac{π}{4}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

19.畫出函數(shù)y=|2x-1|,y=1g|x+1|的大致圖象

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

16.已知向量$\overrightarrow{a}$=(x,y),$\overrightarrow$=(3,-1),設(shè)x,y滿足約束條件$\left\{\begin{array}{l}{x+2y≤4}\\{x-y≤1}\\{x+2≥0}\end{array}\right.$,則目標(biāo)函數(shù)z=$\overrightarrow{a}$$•\overrightarrow$的最大值為7.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.若3${A}_{8}^{x}$<4${A}_{9}^{x-1}$,求x的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.已知函數(shù)$f(x)=2{sin^2}(x+\frac{π}{4})$,則下列結(jié)論正確的是(  )
A.f(x)是奇函數(shù)B.x=$-\frac{π}{4}$是f(x)一條對稱軸
C.f(x)的最小正周期為$\frac{π}{2}$D.($-\frac{π}{4}$,0)是f(x)的一條對稱軸

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

12.如圖,幾何體ABCD-B1C1D1中,正方形BB1D1D⊥平面ABCD,D1D∥CC1,平面D1DCC1與平面B1BCC1所成的二面角的余弦值為$\frac{2}{3}$,BC=3,CD=2CC1=2,AD=$\sqrt{5}$,AD∥BC,M為DD1上任意一點.
(1)BC1⊥∥平面ADD1;
(2)當(dāng)平面BC1M⊥平面BCC1B1時,求DM的長.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.在區(qū)間(0,3]上隨機取一個數(shù)x,則事件“-1≤x≤$\frac{1}{2}$”發(fā)生的概率為( 。
A.$\frac{5}{6}$B.$\frac{2}{3}$C.$\frac{1}{3}$D.$\frac{1}{6}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.設(shè)f(x)=ax2+bx+2是定義在[1+a,1]上的偶函數(shù),則f(x)>0的解集為( 。
A.(-2,2)B.C.(-∞,-1)∪(1,+∞)D.(-1,1)

查看答案和解析>>

同步練習(xí)冊答案