(本題滿分13分)在正三角形內(nèi)有一動(dòng)點(diǎn),已知到三頂點(diǎn)的距離分別為,且滿足,求點(diǎn)的軌跡方程.

()

解析試題分析:以的中點(diǎn)為原點(diǎn),所在的直線為軸,的垂直平分線為軸,建立平面直角坐標(biāo)系,
設(shè)點(diǎn),,,,
用點(diǎn)的坐標(biāo)表示等式,
,
化簡(jiǎn)得,
即所求的軌跡方程為().                        ……13分
考點(diǎn):本小題主要考查用直接法求軌跡方程和兩點(diǎn)間距離公式的應(yīng)用,考查學(xué)生的應(yīng)用能力和運(yùn)算求解能力.
點(diǎn)評(píng):求軌跡方程主要有“相關(guān)點(diǎn)法”和“直接法”,應(yīng)用時(shí)要注意“求誰設(shè)誰”的原則.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

(本小題滿分10分)河上有一拋物線型拱橋,當(dāng)水面距拱頂5時(shí),水面寬為8,一小船寬4,高2,載貨后船露出水面上的部分高,問水面上漲到與拋物線拱頂相距多少米時(shí),小船恰好能通行。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

點(diǎn)A、B分別是以雙曲線的焦點(diǎn)為頂點(diǎn),頂點(diǎn)為焦點(diǎn)的橢圓C長(zhǎng)軸的左、右端點(diǎn),點(diǎn)F是橢圓的右焦點(diǎn),點(diǎn)P在橢圓C上,且位于x軸上方, 
(1)求橢圓C的的方程;
(2)求點(diǎn)P的坐標(biāo);
(3)設(shè)M是橢圓長(zhǎng)軸AB上的一點(diǎn),點(diǎn)M到直線AP的距離等于|MB|,求橢圓上的點(diǎn)到M的距離d的最小值。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

(Ⅰ)已知雙曲線C與雙曲線有相同的漸近線,且一條準(zhǔn)線為,求雙曲線C的方程;
(Ⅱ)已知圓截軸所得弦長(zhǎng)為6,圓心在直線上,并與軸相切,求該圓的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

(本小題滿分14分)在平面直角坐標(biāo)系中,已知點(diǎn),過點(diǎn)作拋物線的切線,其切點(diǎn)分別為(其中)。
⑴ 求的值;
⑵ 若以點(diǎn)為圓心的圓與直線相切,求圓的面積。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知焦點(diǎn)在坐標(biāo)軸上的雙曲線,它的兩條漸近線方程為,焦點(diǎn)到漸近線的距離為,求此雙曲線的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

(本小題12分)已知拋物線C:過點(diǎn)A
(1)求拋物線C 的方程;
(2)直線過定點(diǎn),斜率為,當(dāng)取何值時(shí),直線與拋物線C只有一個(gè)公共點(diǎn)。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

(12分) 如圖,設(shè)P是圓x2+y2=25上的動(dòng)點(diǎn),點(diǎn)D是P在x軸上的投影,M為PD上一點(diǎn),且MD=PD.

(Ⅰ)當(dāng)P在圓上運(yùn)動(dòng)時(shí),求點(diǎn)M的軌跡C的方程;
(Ⅱ)求過點(diǎn)(3,0)且斜率為的直線被C所截線段的長(zhǎng)度.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

(本小題滿分13分)設(shè)橢圓的右焦點(diǎn)為,直線軸交于點(diǎn),若(其中為坐標(biāo)原點(diǎn)).
(1)求橢圓的方程;
(2)設(shè)是橢圓上的任意一點(diǎn),為圓的任意一條直徑(、為直徑的兩個(gè)端點(diǎn)),求的最大值.

查看答案和解析>>

同步練習(xí)冊(cè)答案