(Ⅰ)已知雙曲線C與雙曲線有相同的漸近線,且一條準線為,求雙曲線C的方程;
(Ⅱ)已知圓截軸所得弦長為6,圓心在直線上,并與軸相切,求該圓的方程.

(Ⅰ);(Ⅱ)

解析試題分析:(Ⅰ)由題設(shè)雙曲線C的方程為,則,
∴ 雙曲線C的方程為;
(Ⅱ)由題設(shè)圓的方程為,則
,
∴ 圓的方程為
考點:本題考查雙曲線的標準方程、雙曲線的簡單性質(zhì)以及圓的方程。
點評:已知漸近線方程為,則可設(shè)漸近線方程為;與雙曲線共漸近線的雙曲線方程可設(shè)為:

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:解答題

解答題(本題共10分.請寫出文字說明, 證明過程或演算步驟):
已知是橢圓上一點,,是橢圓的兩焦點,且滿足
(Ⅰ)求橢圓方程;
(Ⅱ)設(shè)是橢圓上任兩點,且直線的斜率分別為、,若存在常數(shù)使,求直線的斜率.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

(本題滿分12分)已知橢圓C:=1(a>b>0)的離心率為,以原點為圓點,橢圓的短半軸為半徑的圓與直線x-y+=0相切。
(Ⅰ)求橢圓的標準方程;
(Ⅱ)設(shè)P(4,0),A,B是橢圓C上關(guān)于x軸對稱的任意兩個不同的點,連接PB交隨圓C于另一點E,證明直線AE與x軸相交于定點Q.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

已知橢圓的中點在原點且過點,焦點在坐標軸上,長軸長是短軸長的3倍,求該橢圓的方程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

(12分)雙曲線的離心率等于,且與橢圓有公共焦點,
①求此雙曲線的方程.
②若拋物線的焦點到準線的距離等于橢圓的焦距,求該拋物線方程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

(本小題滿分12分)已知橢圓的中心在原點,焦點在軸上,離心率為,且經(jīng)過點,直線交橢圓于不同的兩點.
(1)求橢圓的方程;
(2)求的取值范圍;
(3)若直線不過點,求證:直線軸圍成一個等腰三角形.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

(本題滿分13分)在正三角形內(nèi)有一動點,已知到三頂點的距離分別為,且滿足,求點的軌跡方程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

(本小題滿分12分)如圖,橢圓的離心率為,直線所圍成的矩形ABCD的面積為8.
 
(Ⅰ)求橢圓M的標準方程;
(Ⅱ) 設(shè)直線與橢圓M有兩個不同的交點與矩形ABCD有兩個不同的交點.求的最大值及取得最大值時m的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

若拋物線的頂點在原點,其準線方程過雙曲線-=1(,)的一個焦點,如果拋物線與雙曲線交于(,),(,-),求兩曲線的標準方程.

查看答案和解析>>

同步練習冊答案