2.${(x+\frac{m}{{\sqrt{x}}})^6}$展開式中x3的系數(shù)為15,則實(shí)數(shù)m的值為±1.

分析 利用二項(xiàng)式展開式的通項(xiàng)公式即可得出.

解答 解:${(x+\frac{m}{{\sqrt{x}}})^6}$展開式中的通項(xiàng)公式:Tr+1=${∁}_{6}^{r}$${x}^{6-r}(\frac{m}{\sqrt{x}})^{r}$=mr${∁}_{6}^{r}$${x}^{6-\frac{3r}{2}}$,
令6-$\frac{3r}{2}$=3,解得r=2.
∴${m}^{2}{∁}_{6}^{2}$=15,
即m2=1,解得m=±1.
故答案為:±1.

點(diǎn)評(píng) 本題考查了二項(xiàng)式定理的應(yīng)用,考查了推理能力與運(yùn)算能力,屬于基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

12.假設(shè)關(guān)于某設(shè)備的使用年限x和所支出的維修費(fèi)用y(萬元)有如表的統(tǒng)計(jì)資料:
使用年限x12345
維修費(fèi)用y567810
若由資料知y對(duì)x呈線性相關(guān)關(guān)系.
(1)請(qǐng)畫出上表數(shù)據(jù)的散點(diǎn)圖;

(2)請(qǐng)根據(jù)最小二乘法求出線性回歸方程$\hat y$=bx+a的回歸系數(shù)a,b;
(3)估計(jì)使用年限為6年時(shí),維修費(fèi)用是多少?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

13.已知函數(shù)f(x)=|2x-a|+a.
(1)當(dāng)a=1時(shí),求不等式f(x)≤6的解集;
(2)在(1)的條件下,若存在實(shí)數(shù)n使f(n)≤m-f(-n)成立,求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

10.為了解學(xué)生寒假閱讀名著的情況,一名教師對(duì)某班級(jí)的所有學(xué)生進(jìn)行了調(diào)查,調(diào)查結(jié)果如下表:
本數(shù)
人數(shù)
性別
012345
男生01432 2
女生001331
(I)從這班學(xué)生中任選一名男生,一名女生,求這兩名學(xué)生閱讀名著本數(shù)之和為4的概率;
(II)若從閱讀名著不少于4本的學(xué)生中任選4人,設(shè)選到的男學(xué)生人數(shù)為 X,求隨機(jī)變量 X的分布列和數(shù)學(xué)期望;
(III)試判斷男學(xué)生閱讀名著本數(shù)的方差$s_1^2$與女學(xué)生閱讀名著本數(shù)的方差$s_2^2$的大。ㄖ恍鑼懗鼋Y(jié)論).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

17.已知圓錐曲線 E:$\sqrt{{{({x-2\sqrt{3}})}^2}+{y^2}}+\sqrt{{{({x+2\sqrt{3}})}^2}+{y^2}}=4\sqrt{6}$.
(I)求曲線 E的離心率及標(biāo)準(zhǔn)方程;
(II)設(shè) M(x0,y0)是曲線 E上的任意一點(diǎn),過原點(diǎn)作⊙M:(x-x02+(y-y02=8的兩條切線,分別交曲線 E于點(diǎn) P、Q.
①若直線OP,OQ的斜率存在分別為k1,k2,求證:k1k2=-$\frac{1}{2}$;
②試問OP2+OQ2是否為定值.若是求出這個(gè)定值,若不是請(qǐng)說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

7.博鰲亞洲論壇2015年會(huì)員大會(huì)于3月27日在海南博鰲舉辦,大會(huì)組織者對(duì)招募的100名服務(wù)志愿者培訓(xùn)后,組織一次APEC知識(shí)競(jìng)賽,將所得成績(jī)制成如右頻率分布直方圖(假定每個(gè)分?jǐn)?shù)段內(nèi)的成績(jī)均勻分布),組織者計(jì)劃對(duì)成績(jī)前20名的參賽者進(jìn)行獎(jiǎng)勵(lì).
(1)試確定受獎(jiǎng)勵(lì)的分?jǐn)?shù)線;
(2)從受獎(jiǎng)勵(lì)的20人中選3人在主會(huì)場(chǎng)服務(wù),記3人中成績(jī)?cè)?0分以上的人數(shù)為ξ,求ξ的分布列與數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

14.過圓E:(x-1)2+y2=1上的點(diǎn)M(${\frac{3}{2}$,$\frac{{\sqrt{3}}}{2}}$)作圓的切線l,切線l與坐標(biāo)軸的兩個(gè)交點(diǎn)分別為橢圓C的兩個(gè)頂點(diǎn).
(1)求橢圓C的方程;
(2)圓E的切線與橢圓交于A、B兩點(diǎn),F(xiàn)為橢圓的左焦點(diǎn),求|AF|+|BF|的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

11.已知向量$\overrightarrow a$,$\overrightarrow b$均為單位向量,$\overrightarrow a$與$\overrightarrow b$夾角均為$\frac{π}{3}$,則|${\overrightarrow a$-2$\overrightarrow b}$|=$\sqrt{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

12.已知函數(shù)f(x)=$\sqrt{3}$sin2x+2cos2x(x∈R).
(Ⅰ)求函數(shù)f(x)的最小正周期及單調(diào)遞增區(qū)間;
(Ⅱ)若f(x0)=$\frac{11}{5}$,x0∈[${\frac{π}{4}$,$\frac{π}{2}}$],求sin(2x0-$\frac{π}{12}$)的值.

查看答案和解析>>

同步練習(xí)冊(cè)答案