分析 (Ⅰ)令g(x)=x+$\frac{a}{x}$-2,利用導(dǎo)數(shù)判斷g(x)的單調(diào)性,再根據(jù)符合函數(shù)判斷f(x)的單調(diào)性,根據(jù)函數(shù)的單調(diào)性即可求出函數(shù)的最值,即可求出a的值,
(Ⅱ)由由(Ⅰ)可知,函數(shù)f(x)在(2,+∞)上單調(diào)遞增,求出函數(shù)的最小值,根據(jù)存在x0∈(2,+∞),使得f(x0)<0,得到a的取值范圍.
解答 解:(Ⅰ)令g(x)=x+$\frac{a}{x}$-2,
∴g′(x)=1-$\frac{a}{{x}^{2}}$=$\frac{{x}^{2}-a}{{x}^{2}}$,
∵x∈[2,4],1<a<4,
∴x2-a>0,
∴g′(x)>0,
∴g(x)在[2,4]上單調(diào)遞增,
∴f(x)在[2,4]上單調(diào)遞增,
∴f(x)min=f(2)=ln(2+$\frac{a}{2}$-2)=ln$\frac{3}{2}$,
∴a=3,
(Ⅱ)由(Ⅰ)可知,函數(shù)f(x)在(2,+∞)上單調(diào)遞增,
∴f(x)min=f(2)=ln(2+$\frac{a}{2}$-2)=ln$\frac{a}{2}$,
∵存在x0∈(2,+∞),使得f(x0)<0,
∴l(xiāng)n$\frac{a}{2}$<0=ln1,
∴0<a<2
故a的取值范圍為(0,2)
點(diǎn)評(píng) 本題考查了導(dǎo)數(shù)的綜合應(yīng)用及存在性問(wèn)題的應(yīng)用以及復(fù)合函數(shù)的單調(diào)性,考查了學(xué)生的運(yùn)算能力和轉(zhuǎn)化能力,屬于中檔題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 4 | B. | 5 | C. | 6 | D. | 7 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
合一斗 | 斗麻利 | 文士生 | 講頭知尾 | 正功夫 |
115 | 230 | 115 | 345 | 460 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 1 | B. | i | C. | -1 | D. | -i |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 1個(gè) | B. | 2個(gè) | C. | 3個(gè) | D. | 4個(gè) |
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com