【題目】下表提供了某廠節(jié)能降耗技術(shù)改造后生產(chǎn)甲產(chǎn)品過程中記錄的產(chǎn)量x(噸)與相應(yīng)的生產(chǎn)能耗y(噸標準煤)的幾組對照數(shù)據(jù).
x | 3 | 4 | 5 | 6 |
y | 2.5 | 3 | 4 | 4.5 |
(1)請畫出上表數(shù)據(jù)的散點圖.
(2)請根據(jù)上表提供的數(shù)據(jù),用最小二乘法求出y關(guān)于x的線性回歸方程.
(3)已知該廠技改前100噸甲產(chǎn)品的生產(chǎn)能耗為90噸標準煤.試根據(jù)(2)求出的線性回歸方程,預(yù)測生產(chǎn)100噸甲產(chǎn)品的生產(chǎn)能耗比技改前降低多少噸標準煤.
(參考數(shù)值:3×2.5+4×3+5×4+6×4.5=66.5)
科目:高中數(shù)學 來源: 題型:
【題目】設(shè)函數(shù)f(x)=|ax-x2|+2b(a,b∈R).
(1)當b=0時,若不等式f(x)≤2x在x∈[0,2]上恒成立,求實數(shù)a的取值范圍;
(2)已知a為常數(shù),且函數(shù)f(x)在區(qū)間[0,2]上存在零點,求實數(shù)b的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】選修4-4:坐標系與參數(shù)方程
已知直線的參數(shù)方程為(為參數(shù)),以坐標原點為極點,軸的正半軸為極軸建立極坐標系,曲線的極坐標方程為,且曲線的左焦點在直線上.
(1)若直線與曲線交于兩點,求的值;
(2)求曲線的內(nèi)接矩形的周長的最大值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】設(shè)函數(shù),,其中,為自然對數(shù)的底數(shù).
(1)討論的單調(diào)性;
(2)證明:當時,;
(3)確定的所有可能取值,使得在區(qū)間內(nèi)恒成立.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知雙曲線與橢圓有相同的焦點,實半軸長為.
(1)求雙曲線的方程;
(2)若直線與雙曲線有兩個不同的交點和,且(其中為原點),求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,過拋物線上一點,作兩條直線分別交拋物線于,當與的斜率存在且傾斜角互補時:
(1)求的值;
(2)若直線在軸上的截距時,求面積的最大值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知動圓過定點,且與直線相切.
(1)求動圓圓心的軌跡的方程;
(2)過(1)中軌跡上的點作兩條直線分別與軌跡相交于兩點,試探究:當直線的斜率存在且傾斜角互補時,直線的斜率是否為定值?若是,求出這個定值;若不是,請說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】設(shè)橢圓()的右焦點為,右頂點為,已知,其中為坐標原點,為橢圓的離心率.
(1)求橢圓的方程;
(2)設(shè)過點的直線與橢圓交于點(不在軸上),垂直于的直線與交于點,與軸交于點,若,且,求直線的斜率的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù).
(1)當時,求函數(shù)的單調(diào)區(qū)間;
(2)是否存在實數(shù),使恒成立,若存在,求出實數(shù)的取值范圍;若不存在,說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com