((本小題滿分14分)如圖,四棱錐的底面是正方形,側棱底面,、分別是棱的中點.
(1)求證:;  (2) 求直線與平面所成的角的正切值


(方法一)解:因為,所以[
因為底面是正方形,所以

,故
,所以,      (3分)
又因為,點是棱的中點,
所以,,故
,所以.    (7分)
(2)過點,連接
是棱的中點,底面是正方形可得
,又由底面得到,,
,所以為直線與平面所成的角,     (10分)

,得到,
中,
.      (14分)
(方法二)解:以A為原點,分別以的方向為軸正方向建立空間直角坐標系,設[來源:學科網(wǎng)ZXXK]
,              (2分)
∵點、分別是棱、的中點,
,.,         (4分)
,所以.      (6分)
(2)又由底面得到
,,,
的法向量=(-1,1,0),                         (10分)
設直線與平面所成的角

解析

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:解答題

(本小題滿分12分)
如圖(1)在直角梯形ABCP中,BC∥AP,AB⊥BC,CD⊥AP,AD=DC=PD=2,E、F、G分別是PC、PD、BC的中點,現(xiàn)將△PDC沿CD折起,使平面PDC⊥平面ABCD(如圖2)
(1)求二面角G-EF-D的大小;
(2)在線段PB上確定一點Q,使PC⊥平面ADQ,并給出證明過程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

(12分)已知三棱柱的三視圖如圖所示,其中正視圖和側視圖均為矩形,俯視圖中,。
(I)在三棱柱中,求證:;
(II)在三棱柱中,若是底邊
的中點,求證:平面;

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

本小題滿分12分)如圖,在三棱柱中,,,分別為的中點.
(1)求證:∥平面; (2)求證:平面;
(3)直線與平面所成的角的正弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

(14分)(理)在長方體ABCD—A1B1C1D1,中,AD=AA1=1,AB=2,點E在棱
AD上移動.
(1)證明:D1E⊥A1D;
(2)當E為AB的中點時,求點E到面ACD1的距離;
(3)AE等于何值時,二面角D1—EC—D的大小為

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:單選題

已知向量a=(1,1,0),b=(-1,0,2),且ka+b與2a-b互相垂直,則k值是(  )

A.1 B. C. D.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:單選題

如圖,正四面體的頂點分別在兩兩垂直的三條射線上,則在下列命題中,錯誤的為(   )

A.是正三棱錐
B.直線平面
C.直線所成的角是
D.二面角

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:單選題

已知平面α內(nèi)有一個點A(2,-1,2),α的一個法向量為n=(3,1,2),則下列點P中,在平面α內(nèi)的是(  )

A.(1,-1,1) B.(1,3,)
C.(1,-3,) D.(-1,3,-)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:單選題

直三棱柱ABC-A1B1C1中,∠BCA=90°,M,N分別是A1B1,A1C1的中點,BC=CA=CC1,
則BM與AN所成的角的余弦值為(  )

A. B. C. D. 

查看答案和解析>>

同步練習冊答案