10.下列命題正確的是(  )
A.a2+1>2aB.|x+$\frac{1}{x}$|≥2C.$\frac{a+b}{\sqrt{ab}}$≤2D.|sinx+$\frac{4}{sinx}$|≥4

分析 利用基本不等式,注意其使用條件,即可得出結(jié)論.

解答 解:對(duì)于A,a2+1≥2a,故不正確;
對(duì)于B,|x+$\frac{1}{x}$|=|x|+|$\frac{1}{x}$|≥2,x=±1時(shí)取等號(hào),故正確;
對(duì)于C,a=2,b=8,左邊=2.5>2,故不成立;
對(duì)于D,根據(jù)基本不等式,取不到4,不正確.
故選:B.

點(diǎn)評(píng) 本題考查基本不等式的運(yùn)用,注意其使用條件是關(guān)鍵.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

8.已知橢圓$\frac{{x}^{2}}{4}$+$\frac{{y}^{2}}{3}$=1上一動(dòng)點(diǎn)P,與圓(x-1)2+y2=1上一動(dòng)點(diǎn)Q,及圓(x+1)2+y2=1上一動(dòng)點(diǎn)R,則|PQ|+|PR|的最大值為6.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

1.已知關(guān)于x的方程(a2-1)x2-2(a+1)x+1=0恰有一個(gè)實(shí)數(shù)解,則α=1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

18.各項(xiàng)都是正數(shù)的等比數(shù)列{an}中,3a1,$\frac{1}{2}$a3,2a2成等差數(shù)列,則$\frac{{a}_{10}+{a}_{12}+{a}_{15}+{a}_{19}+{a}_{20}+{a}_{23}}{{a}_{8}+{a}_{10}+{a}_{13}+{a}_{17}+{a}_{18}+{a}_{21}}$=9.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

5.已知命題p:?x∈[1,2],x2-a≥0,命題q:?x∈R,x2+2ax+2-a<0.若“p∧q”為真命題,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.若隨機(jī)變量ξ~B(n,p),且Eξ=300,Dξ=200,則p=( 。
A.$\frac{1}{4}$B.$\frac{1}{3}$C.$\frac{1}{2}$D.$\frac{2}{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.在直角坐標(biāo)系中,直線x+$\sqrt{3}$y+3=0的傾斜角是(  )
A.$\frac{π}{6}$B.$\frac{π}{3}$C.$\frac{2}{3}π$D.$\frac{5}{6}π$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

19.已知函數(shù)f(x)=sin2ωx-$\sqrt{3}$cos2ωx(ω>0),且y=f(x)的最小正周期為π.
(1)求函數(shù)f(x)的單調(diào)遞增區(qū)間;
(2)已知△ABC的內(nèi)角A、B、C的對(duì)邊分別為a,b,c,角C為銳角,向量$\overrightarrow{a}$=(a,-2)和$\overrightarrow$=(b,3)垂直,且f(C)=$\sqrt{3}$,求△ABC的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.《九章算術(shù)》是我國古代內(nèi)容極為豐富的數(shù)學(xué)名著,書中有如下問題:“今有女子善織,日益功,疾,初日織五尺,今一月織九匹三丈(1匹=40尺,一丈=10尺),問日益幾何?”其意思為:“有一女子擅長織布,每天比前一天更加用功,織布的速度也越來越快,從第二天起,每天比前一天多織相同量的布,第一天織5尺,一月織了九匹三丈,問每天增加多少尺布?”若一個(gè)月按30天算,則每天增加量為( 。
A.$\frac{1}{2}$尺B.$\frac{8}{15}$尺C.$\frac{16}{29}$尺D.$\frac{16}{31}$尺

查看答案和解析>>

同步練習(xí)冊答案