【題目】在平面直角坐標(biāo)系xOy中,橢圓C:的右準(zhǔn)線方程為x=2,且兩焦點(diǎn)與短軸的一個(gè)頂點(diǎn)構(gòu)成等腰直角三角形.
(1)求橢圓C的方程;
(2)假設(shè)直線l:與橢圓C交于A,B兩點(diǎn).①若A為橢圓的上頂點(diǎn),M為線段AB中點(diǎn),連接OM并延長(zhǎng)交橢圓C于N,并且,求OB的長(zhǎng);②若原點(diǎn)O到直線l的距離為1,并且,當(dāng)時(shí),求△OAB的面積S的范圍.
【答案】(1);(2)①;②.
【解析】
(1)根據(jù)橢圓的幾何性質(zhì)可得到a2,b2;
(2)聯(lián)立直線和橢圓,利用弦長(zhǎng)公式可求得弦長(zhǎng)AB,利用點(diǎn)到直線的距離公式求得原點(diǎn)到直線l的距離,從而可求得三角形面積,再用單調(diào)性求最值可得值域.
(1)因?yàn)閮山裹c(diǎn)與短軸的一個(gè)頂點(diǎn)的連線構(gòu)成等腰直角三角形,所以,
又由右準(zhǔn)線方程為,得到,
解得,所以
所以,橢圓的方程為
(2)①設(shè),而,則,
∵ , ∴
因?yàn)辄c(diǎn)都在橢圓上,所以
,將下式兩邊同時(shí)乘以再減去上式,解得,
所以
②由原點(diǎn)到直線的距離為,得,化簡(jiǎn)得:
聯(lián)立直線的方程與橢圓的方程:,得
設(shè),則,且
,
所以
的面積
,
因?yàn)?/span>在為單調(diào)減函數(shù),
并且當(dāng)時(shí),,當(dāng)時(shí),,
所以的面積的范圍為.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù).
(1)當(dāng)時(shí),求不等式的解集;
(2)若不等式對(duì)任意的恒成立,求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】選修4-4:坐標(biāo)系與參數(shù)方程
已知曲線的極坐標(biāo)方程是,以極點(diǎn)為平面直角坐標(biāo)系的原點(diǎn),極軸為軸的正半軸,建立平面直角坐標(biāo)系,直線的參數(shù)方程是(是參數(shù)),
(Ⅰ)寫出直線的普通方程和曲線的直角坐標(biāo)方程;
(Ⅱ)設(shè)曲線經(jīng)過(guò)伸縮變換得到曲線,曲線任一點(diǎn)為,求點(diǎn)直線的距離的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù),(其中,為自然對(duì)數(shù)的底數(shù)).
(1)討論函數(shù)的單調(diào)性;
(2)若分別是的極大值點(diǎn)和極小值點(diǎn),且,求證:.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】從一張半徑為3的圓形鐵皮中裁剪出一塊扇形鐵皮(如圖1陰影部分),并卷成一個(gè)深度為米的圓錐筒(如圖2).若所裁剪的扇形鐵皮的圓心角為.
(1)求圓錐筒的容積;
(2)在(1)中的圓錐內(nèi)有一個(gè)底面圓半徑為的內(nèi)接圓柱(如圖3),求內(nèi)接圓柱側(cè)面積最大時(shí)的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè)
(1)求在上的最大值和最小值;
(2)把的圖像上的所有點(diǎn)的橫坐標(biāo)伸長(zhǎng)到原來(lái)的2倍(縱坐標(biāo)不變),再把得到的圖像向左平移個(gè)單位長(zhǎng)度,得到函數(shù)的圖像,求的單調(diào)減區(qū)間
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知點(diǎn)A(0,-2),橢圓E: (a>b>0)的離心率為,F是橢圓E的右焦點(diǎn),直線AF的斜率為,O為坐標(biāo)原點(diǎn).
(1)求E的方程;
(2)設(shè)過(guò)點(diǎn)A的動(dòng)直線l與E相交于P,Q兩點(diǎn).當(dāng)△OPQ的面積最大時(shí),求l的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某城市戶居民的月平均用電量(單位:度),以,,,,,,分組的頻率分布直方圖如圖.
(1)求直方圖中的值;
(2)求月平均用電量的眾數(shù)和中位數(shù);
(3)在月平均用電量為,,,的四組用戶中,用分層抽樣的方法抽取戶居民,則月平均用電量在的用戶中應(yīng)抽取多少戶?
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖在四面體中,是邊長(zhǎng)為2的等邊三角形,為直角三角形,其中為直角頂點(diǎn),.分別是線段上的動(dòng)點(diǎn),且四邊形為平行四邊形.
(1)求證:平面,平面;
(2)試探究當(dāng)二面角從0°增加到90°的過(guò)程中,線段在平面上的投影所掃過(guò)的平面區(qū)域的面積;
(3)設(shè),且為等腰三角形,當(dāng)為何值時(shí),多面體的體積恰好為?
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com