分析 根據(jù)題意,利用n個(gè)正數(shù)的算術(shù)平均數(shù)不小于它們的幾何平均數(shù),即可得出正確的結(jié)論.
解答 解:由$y=x+\frac{1}{x}$,x>0的最小值是$\sqrt{x•\frac{1}{x}}$=2,
$y=x+\frac{1}{x^2}$,x>0的最小值是3$\root{3}{\frac{x}{2}•\frac{x}{2}•\frac{1}{{x}^{2}}}$=$\frac{3}{{\root{3}{2^2}}}$,
$y=x+\frac{1}{x^3}$,x>0的最小值是4$\root{4}{\frac{x}{3}•\frac{x}{3}•\frac{x}{3}•\frac{1}{{x}^{3}}}$=$\frac{4}{{\root{4}{3^3}}}$,
可以歸納出$y=x+\frac{1}{x^n}$,x>0的最小值是
(n+1)$\root{n+1}{\frac{x}{n}•\frac{x}{n}•\frac{x}{n}…\frac{x}{n}•\frac{1}{{x}^{n}}}$=$\frac{n+1}{\root{n+1}{{n}^{n}}}$.
故答案為:$\frac{n+1}{\root{n+1}{{n}^{n}}}$.
點(diǎn)評(píng) 本題考查了歸納推理的應(yīng)用問(wèn)題,是基礎(chǔ)題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | $\frac{32π}{3}+32$ | B. | $\frac{32π}{3}+16$ | C. | 16π+32 | D. | 36π+16 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | $\sqrt{2}$ | B. | $\sqrt{3}$ | C. | $\sqrt{5}$ | D. | 2 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | ±2$\sqrt{2}$ | B. | ±3 | C. | ±4 | D. | ±2$\sqrt{5}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com