17.如圖為某幾何體的三視圖,則該幾何體的外接球的表面積為( 。
A.$\frac{27}{2}π$B.27πC.27$\sqrt{3}$πD.$\frac{27\sqrt{3}π}{2}$

分析 由已知中的三視圖,可得該幾何體是以俯視圖為底面的四棱錐,其外接球等同于棱長(zhǎng)為3的正方體的外接球,從而求得答案.

解答 解:由已知中的三視圖,可得該幾何體是以俯視圖為底面的四棱錐,
其底面是邊長(zhǎng)為3的正方形,且高為3,
其外接球等同于棱長(zhǎng)為3的正方體的外接球,
所以外接球半徑R滿足:2R=$\sqrt{{3}^{2}{+3}^{2}{+3}^{2}}$=$\sqrt{27}$,
所以外接球的表面積為S=4πR2=27π.
故選:B.

點(diǎn)評(píng) 本題考查了由三視圖求幾何體表面積的應(yīng)用問(wèn)題,根據(jù)已知三視圖,判斷幾何體的形狀是解題的關(guān)鍵.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

7.若x,y∈R+,且x+y=5,則$\sqrt{x+1}+\sqrt{y+3}$的最大值是( 。
A.$3\sqrt{2}$B.$\frac{9}{2}$C.9D.$\frac{{3\sqrt{2}}}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

8.函數(shù)$f(x)={log_{\frac{1}{2}}}({x^2}-4x)$的單調(diào)遞增區(qū)間是(  )
A.(2,+∞)B.(-∞,0)C.(4,+∞)D.(-∞,-2)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

5.設(shè)23-2x<23x-4,則x的取值范圍是x>$\frac{7}{5}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

12.若函數(shù)y=f(x)是函數(shù)y=3x的反函數(shù),則f($\frac{1}{2}$)的值為-log32

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

2.等差數(shù)列{an}的前n項(xiàng)和為Sn,且a1<0,若存在自然數(shù)m≥3,使得am=Sm,則當(dāng)n>m時(shí),Sn與an的大小關(guān)系是( 。
A.Sn<anB.Sn≤anC.Sn>anD.大小不能確定

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

9.設(shè)函數(shù)f(x)=xea-x+bx,曲線y=f(x)在點(diǎn)(2,f(2))處的切線方程為y=(e-1)x+4.
(1)求a,b的值;
(2)求證:f′(x)>0.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

6.若$tan({α+\frac{π}{4}})=-3$,則cos2α+2sin2α=( 。
A.$\frac{9}{5}$B.1C.$-\frac{3}{5}$D.0

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

7.如圖,在四棱錐P-ABCD中,AB∥CD,CD=2AB,平面PAD⊥底面ABCD,PA⊥AD,E和F分別是CD和PC的中點(diǎn).
求證:(1)PA⊥底面ABCD;(2)平面BEF∥平面PAD.

查看答案和解析>>

同步練習(xí)冊(cè)答案