12.設(shè)$\overrightarrow a$=(4,3),$\overrightarrow a$在$\overrightarrow b$方向上投影為$\frac{5\sqrt{2}}{2}$,$\overrightarrow b$在x軸正方向上的投影為2,且$\overrightarrow b$對應(yīng)的點在第四象限,則$\overrightarrow b$=(2,14)或$(2,-\frac{2}{7})$.

分析 根據(jù)投影得出$\overrightarrow{a}$、$\overrightarrow$的夾角及$\overrightarrow$的橫坐標為2,設(shè)$\overrightarrow$=(2,y),利用夾角公式列方程解出y即可.

解答 解:∵$\overrightarrow a$=(4,3),$\overrightarrow a$在$\overrightarrow b$方向上投影為$\frac{5\sqrt{2}}{2}$,|$\overrightarrow{a}$|=$\sqrt{{4}^{2}{+3}^{2}}$=5,設(shè)出$\overrightarrow{a}$、$\overrightarrow$的夾角為θ,
∴5cosθ=$\frac{5\sqrt{2}}{2}$,∴cosθ=$\frac{\sqrt{2}}{2}$.
∵$\overrightarrow$在x軸上的投影為2,設(shè)$\overrightarrow$=(2,y),則$\overrightarrow{a}•\overrightarrow$=8+3y,|$\overrightarrow$|=$\sqrt{4{+y}^{2}}$.
∴cosθ=$\frac{\overrightarrow{a}•\overrightarrow}{|\overrightarrow{a}|•|\overrightarrow|}$=$\frac{8+3y}{5•\sqrt{4{+y}^{2}}}$=$\frac{\sqrt{2}}{2}$,解得y=14或y=-$\frac{2}{7}$.
故$\overrightarrow$=(2,14),或 $\overrightarrow$=(2,-$\frac{2}{7}$),
故答案為:(2,14)或(2,-$\frac{2}{7}$).

點評 本題考查了一個向量在另一個向量上的投影的定義,平面向量的數(shù)量積運算,屬于中檔題.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:選擇題

2.若集合A={-1,1,2,3},集合B={x|x∈A,$\frac{1}{x}$∉A},則集合B中元素的個數(shù)為( 。
A.1B.2C.3D.4

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

3.求下列函數(shù)的值域:
(1)y=$\frac{1-{x}^{2}}{1+{x}^{2}}$;                    
(2)y=$\sqrt{-2{x}^{2}+x+3}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

20.設(shè)變量x,y滿足約束條件$\left\{\begin{array}{l}{x-y≥0}\\{x+y≤1}\\{x+2y≥1}\end{array}\right.$,則目標函數(shù)z=2x+3y的最大值為( 。
A.2B.3C.$\frac{5}{2}$D.$\frac{5}{3}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

7.若直線l1:ax+2y-1=0與l2:3x-ay+1=0垂直,則a=(  )
A.-1B.1C.0D.2

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

17.下列四組函數(shù)中,表示同一函數(shù)的是( 。
A.f(x)=$\sqrt{{x}^{2}}$,g(x)=xB.f(x)=x,g(x)=$\frac{{x}^{2}}{x}$
C.f(x)=$\sqrt{x-1}$•$\sqrt{x+1}$,g(x)=$\sqrt{{x}^{2}-1}$D.f(x)=x,g(x)=$\root{3}{{x}^{3}}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

4.下列有關(guān)函數(shù)單調(diào)性的說法,不正確的是(  )
A.若f(x)為增函數(shù),g(x)為增函數(shù),則f(x)+g(x)為增函數(shù)
B.若f(x)為減函數(shù),g(x)為減函數(shù),則f(x)+g(x)為減函數(shù)
C.若f(x)為增函數(shù),g(x)為減函數(shù),則f(x)+g(x)為增函數(shù)
D.若f(x)為減函數(shù),g(x)為增函數(shù),則f(x)-g(x)為減函數(shù)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

1.已知f(x)=$\frac{x+a}{{x}^{2}+bx+1}$是定義在[-1,1]上的奇函數(shù).
(1)求f(x)的解析式;
(2)判斷并證明f(x)的單調(diào)性;
(3)解不等式:f(x)-f(1-x)<0.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

2.已知關(guān)于x的方程x2-(k+1)x+$\frac{1}{4}$k2+1=0,根據(jù)下列條件,分別求出k的值.
(1)方程兩實根的積為5;
(2)方程的兩實根x1,x2滿足|x1|=x2

查看答案和解析>>

同步練習冊答案