【題目】將一顆骰子先后拋擲2次,觀察向上的點數(shù),事件A:“兩數(shù)之和為8”,事件B:“兩數(shù)之和是3的倍數(shù)”,事件C:“兩個數(shù)均為偶數(shù)”.

(I)寫出該試驗的基本事件,并求事件A發(fā)生的概率;

(II)求事件B發(fā)生的概率;

(III)事件A與事件C至少有一個發(fā)生的概率.

【答案】(I)||=36,P(A)= (II)(III)

【解析】

I)用列舉法列舉出所有的基本事件,利用古典概型概率計算公式求得事件發(fā)生的概率.II)根據(jù)(I)列舉的基本事件,利用古典概型概率計算公式求得事件發(fā)生的概率.III)根據(jù)(I)列舉的基本事件,利用古典概型概率計算公式求得事件與事件至少有一個發(fā)生的概率.

I)所有可能的基本事件為:

.

其中“兩數(shù)之和為”的有種,故.

(II)由(I)得“兩數(shù)之和是的倍數(shù)”的有種,故概率為.

(III)由(I) “兩個數(shù)均為偶數(shù)”的有種,“兩數(shù)之和為”的有種,重復的有 三種,故事件與事件至少有一個發(fā)生的有種,概率為.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

【題目】從某校高一年級學生中隨機抽取了20名學生,將他們的數(shù)學檢測成績(分)分成六段(滿分100分,成績均為不低于40分的整數(shù)):,,...,后,得到如圖所示的頻率分布直方圖.

(Ⅰ)求圖中實數(shù)的值;

(Ⅱ)若該校高一年級共有學生600名,試根據(jù)以上數(shù)據(jù),估計該校高一年級數(shù)學檢測成績不低于80分的人數(shù).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】下面四個正方體圖形中,為正方體的兩個頂點,、分別為其所在棱的中點,能得出平面的圖形是(

A.B.

C.D.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,PA垂直于以AB為直徑的圓所在平面,C為圓上異于A,B的任意一點,垂足為E,點FPB上一點,則下列判斷中不正確的是( )﹒

A.平面PACB.C.D.平面平面PBC

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】(本題滿分12)將一個半徑適當?shù)男∏蚍湃肴鐖D所示的容器最上方的入口處,小球?qū)⒆杂上侣?/span>.小球在下落過程中,3次遇到黑色障礙物,最后落入袋或袋中.已知小球每次遇到黑色障礙物時向左、右兩邊下落的概率都是.

)求小球落入袋中的概率;

)在容器入口處依次放入4個小球,為落入袋中小球的個數(shù),試求的概率和的數(shù)學期望.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】黃金螺旋線又名鸚鵡螺曲線,是自然界最美的鬼斧神工。就是在一個黃金矩形(寬除以長約等于0.6的矩形)先以寬為邊長做一個正方形,然后再在剩下的矩形里面再以其中的寬為邊長做一個正方形,以此循環(huán)做下去,最后在所形成的每個正方形里面畫出1/4圓,把圓弧線順序連接,得到的這條弧線就是“黃金螺旋曲線了。著名的“蒙娜麗莎”便是符合這個比例,現(xiàn)把每一段黃金螺旋線與其每段所在的正方形所圍成的扇形面積設為,每扇形的半徑設為滿足,若將的每一項按照上圖方法放進格子里,每一小格子的邊長為1,記前項所占的對應正方形格子的面積之和為,則下列結(jié)論錯誤的是( )

A. B.

C. D.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】中華民族具有五千多年連綿不斷的文明歷史,創(chuàng)造了博大精深的中華文化,為人類文明進步作出了不可磨滅的貢獻.為弘揚傳統(tǒng)文化,某校組織了國學知識大賽,該校最終有四名選手、參加了總決賽,總決賽設置了一、二、三等獎各一個,無并列.比賽結(jié)束后,說:“你沒有獲得一等獎”,說:“你獲得了二等獎”;對大家說:“我未獲得三等獎”,、、說:“你媽三人中有一人未獲獎”,四位選手中僅有一人撒謊,則選手獲獎情形共計__________種.(用數(shù)字作答)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】山西省2021年高考將實施新的高考改革方案.考生的高考總成績將由3門統(tǒng)一高考科目成績和自主選擇的3門普通高中學業(yè)水平等級考試科目成績組成,總分為750分.其中,統(tǒng)一高考科目為語文、數(shù)學、外語,自主選擇的3門普通高中學業(yè)水平等級考試科目是從物理、化學、生物、歷史、政治、地理6科中選擇3門作為選考科目,語、數(shù)、外三科各占150分,選考科目成績采用“賦分制”,即原始分數(shù)不直接用,而是按照學生分數(shù)在本科目考試的排名來劃分等級并以此打分得到最后得分。根據(jù)高考綜合改革方案,將每門等級考試科目中考生的原始成績從高到低分為共8個等級.參照正態(tài)分布原則,確定各等級人數(shù)所占比例分別為3%、7%、16%、24%、24%、16%、7%、3%.等級考試科目成績計入考生總成績時,將A至E等級內(nèi)的考生原始成績,依照等比例轉(zhuǎn)換法則,分別轉(zhuǎn)換到八個分數(shù)區(qū)間,得到考生的等級成績。舉例說明1:甲同學化學學科原始分為65分,化學學科 等級的原始分分布區(qū)間為,則該同學化學學科的原始成績屬等級,而等級的轉(zhuǎn)換分區(qū)間為那么,甲同學化學學科的轉(zhuǎn)換分為:設甲同學化學科的轉(zhuǎn)換等級分為 ,求得.四舍五入后甲同學化學學科賦分成績?yōu)?6分。舉例說明2:乙同學化學學科原始分為69分,化學學科等級的原始分分布區(qū)間為則該同學化學學科的原始成績屬等級.而等級的轉(zhuǎn)換分區(qū)間為這時不用公式,乙同學化學學科賦分成績直接取下端點70分,F(xiàn)有復興中學高一年級共3000人,為給高一學生合理選科提供依據(jù),對六個選考科目進行測試,其中物理考試原始成績基本服從正態(tài)分布。且等級為 所在原始分分布區(qū)間為,且等級為所在原始分分布區(qū)間為,且等級為所在原始分分布區(qū)間為

(1)若小明同學在這次考試中物理原始分為84分,小紅同學在這次考試中物理原始分為72分,求小明和小紅的物理學科賦分成績;(精確到整數(shù)).

(2)若以復興中學此次考試頻率為依據(jù),在學校隨機抽取4人,記這4人中物理原始成績在區(qū)間 的人數(shù),求的數(shù)學期望和方差.(精確到小數(shù)點后三位數(shù)).

附:若隨機變量滿足正態(tài)分布,給出以下數(shù)據(jù),

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某車間20名工人年齡數(shù)據(jù)如下表:

年齡(歲)

19

24

26

30

34

35

40

合計

工人數(shù)(人)

1

3

3

5

4

3

1

20

(1)求這20名工人年齡的眾數(shù)與平均數(shù);

(2)以十位數(shù)為莖,個位數(shù)為葉,作出這20名工人年齡的莖葉圖;

(3)從年齡在24和26的工人中隨機抽取2人,求這2人均是24歲的概率.

查看答案和解析>>

同步練習冊答案