6.求下列函數(shù)的定義域:
(1)f(x)=$\frac{\sqrt{5-x}}{|x|-3}$;
(2)y=$\frac{\sqrt{{x}^{2}-1}+\sqrt{1-{x}^{2}}}{x-1}$.

分析 (1)由根式內(nèi)部的代數(shù)式大于等于0,分式的分母不等于0,聯(lián)立解不等式組即可;
(2)由根式內(nèi)部的代數(shù)式大于等于0,分式的分母不等于0,聯(lián)立解不等式組即可.

解答 解:(1)由$\left\{\begin{array}{l}{5-x≥0}\\{|x|-3≠0}\end{array}\right.$,解得x≤5且x≠±3.
∴f(x)=$\frac{\sqrt{5-x}}{|x|-3}$的定義域?yàn)椋?∞,-3)∪(-3,3)∪(3,5];
(2)由$\left\{\begin{array}{l}{{x}^{2}-1≥0}\\{1-{x}^{2}≥0}\\{x-1≠0}\end{array}\right.$,得x=-1.
∴函數(shù)y=$\frac{\sqrt{{x}^{2}-1}+\sqrt{1-{x}^{2}}}{x-1}$的定義域?yàn)閧-1}.

點(diǎn)評 本題考查函數(shù)的定義域及其求法,考查不等式組的解法,是基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

16.已知函數(shù)f(x)=$\frac{lnx}{x}$,g(x)=$\frac{m}{x}$-$\frac{3}{{x}^{2}}$-1.
(Ⅰ)求函數(shù)f(x)的單調(diào)區(qū)間;
(Ⅱ)對一切x∈(0,+∞),2f(x)≥g(x)恒成立,求實(shí)數(shù)m的取值范圍;
(Ⅲ)證明:對一切x∈(0,+∞),都有l(wèi)nx<$\frac{2x}{e}$-$\frac{{x}^{2}}{{e}^{x}}$成立.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

17.不等式|2x-1|-|x+2|>0的解集為$(-∞,-\frac{1}{3})∪(3,+∞)$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

14.設(shè)定義在R上的函數(shù)f(x)=a0x4+a1x3+a2x2+a3x+a4(a0,a1,a2,a3,a4∈R),函數(shù)g(x)=$\root{3}{3f(x)+3x}$,當(dāng)x=-1時,f(x)取得極大值$\frac{2}{3}$,且函數(shù)y=f(x+1)的圖象關(guān)于點(diǎn)(-1,0)對稱.
(1)求函數(shù)f(x)的表達(dá)式;
(2)求證:當(dāng)x>0時,[1+$\frac{1}{g(x)}$]g(x)<e(e為自然對數(shù)的底數(shù));
(3)若bn=g(n)${\;}^{\frac{1}{g(n+1)}}$(n∈N*),數(shù)列{bn}中是否存在bn=bm(n≠m)?若存在,求出所有相等的兩項(xiàng);若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.若sinα是有理數(shù),則其值肯定是有理數(shù)的是( 。
A.cosαB.tanαC.sin2αD.cos2α

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

11.如圖程序輸出的結(jié)果s=57,則判斷框中應(yīng)填( 。
A.i<7B.i>7C.i≥6D.i>6

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

18.如圖所示,該幾何體是由一個直三棱柱ADE-BCF和一個正死棱錐P-ABCD組合而成,AD⊥AF,AE=AD=2.
(1)證明:平面PAD⊥平面ABFE;
(2)當(dāng)正四棱錐P-ABCD的高為1時,求二面角C-AF-P的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.在平面直角坐標(biāo)系xOy中,已知橢圓C:$\frac{{x}^{2}}{m+8}$+$\frac{{y}^{2}}{m}$=1(m>0)的離心率為$\frac{\sqrt{6}}{3}$.
(1)求m的值;
(2)設(shè)點(diǎn)A為橢圓C的上頂點(diǎn),問是否存在橢圓C的一條弦AB,使直線AB與圓(x-1)2+y2=r2(r>0)相切,且切點(diǎn)P恰好為線段AB的中點(diǎn)?若存在,其滿足條件的所有直線AB的方程和對應(yīng)的r的值?若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

5.把一正方體沿對角面劈開,得一如圖幾何體,其中B1C1=A1C1=2,M為A1B1的中點(diǎn),試作出過B1且與平面AMC1平行的截面,并計(jì)算該截面面積.

查看答案和解析>>

同步練習(xí)冊答案