【題目】等腰直角三角形ABO內(nèi)接于拋物線y22px(p>0),O為拋物線的頂點(diǎn),OAOB,則△ABO的面積是(  )

A.8p2B.4p2

C.2p2D.p2

【答案】B

【解析】

設(shè)等腰直角三角形OAB的頂點(diǎn)A(x1,y1),B(x2,y2),利用OA=OB可求得x1=x2,進(jìn)而可求得AB=4p,從而可得SOAB

設(shè)等腰直角三角形OAB的頂點(diǎn)A(x1,y1),B(x2,y2),則=2px1,=2px2,

OA=OB得:+=+

+2px1﹣2px2=0,即(x1﹣x2)(x1+x2+2p)=0,

x10,x20,2p0,

x1=x2,即A,B關(guān)于x軸對(duì)稱.

∴直線OA的方程為:y=xtan45°=x,由解得,

AB=4p,

SOAB=×2p×4p=4p2

故選B

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知

(I)求函數(shù)的極值;

(II)若方程僅有一個(gè)實(shí)數(shù)解,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】三個(gè)圓交于一點(diǎn),又兩兩將于點(diǎn)、.以為圓心的一個(gè)圓與上述三個(gè)圓分別交于點(diǎn),,,其中,點(diǎn)在不含點(diǎn)的圓上,等等.又設(shè)、、的外接圓交于一點(diǎn) 、的外接圓交于一點(diǎn).證明:.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】p:關(guān)于x的方程無(wú)解,q

1)若時(shí),“”為真命題,“”為假命題,求實(shí)數(shù)a的取值范圍.

2)當(dāng)命題“若p,則q”為真命題,“若q,則p”為假命題時(shí),求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在平面直角坐標(biāo)系中,已知雙曲線.

1)過(guò)曲線的左頂點(diǎn)作的兩條漸近線的平行線,求這兩組平行線圍成的平行四邊形的面積;

2)設(shè)斜率為的直線交曲線兩點(diǎn),若與圓相切,求證:.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè)橢圓的右頂點(diǎn)為,上頂點(diǎn)為.已知橢圓的離心率為,.

(Ⅰ)求橢圓的標(biāo)準(zhǔn)方程;

(Ⅱ)設(shè)直線與橢圓交于,兩點(diǎn),且點(diǎn)在第二象限.延長(zhǎng)線交于點(diǎn),若的面積是面積的3倍,求的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè)函數(shù),

1)求曲線在點(diǎn)處的切線方程;

2)當(dāng)時(shí),不等式恒成立,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知等差數(shù)列中,

1)求數(shù)列的通項(xiàng);

2)滿足的共有幾項(xiàng)?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè)集合X是實(shí)數(shù)R的子集,如果點(diǎn)滿足:對(duì)任意,都存在,使得,那么稱為集合X的聚點(diǎn).集合①;②R除去;③;④Z其中以0為聚點(diǎn)的集合有( ).

A.②③B.①④C.①③D.①②

查看答案和解析>>

同步練習(xí)冊(cè)答案