【題目】已知函數(shù)(且).
(1)討論函數(shù)的單調(diào)性;
(2),關(guān)于的方程有唯一解,求的值.
【答案】(1)當為奇數(shù)時,函數(shù)在為增函數(shù),當為偶數(shù)時,函數(shù)在為減函數(shù),在為增函數(shù)
(2)
【解析】
(1)利用導數(shù)判斷函數(shù)的單調(diào)性即可;
(2)利用,將方程化簡,得到函數(shù),將方程問題轉(zhuǎn)化為函數(shù)零點問題,再結(jié)合導數(shù)研究即可得解.
解:(1)因為函數(shù),
所以,(且),
所以,(且),
當為奇數(shù)時,,即函數(shù)在為增函數(shù),
當為偶數(shù)時,,
所以當時,,當時,,
即函數(shù)在為減函數(shù),在為增函數(shù);
(2)當,,
設(shè),
則關(guān)于的方程有唯一解等價于函數(shù)只有1個零點,
又,
令,
則,即,①
當時,,當時,,
即函數(shù)在為減函數(shù),在為增函數(shù),
則,
由題意有,即,②
②①得:,
設(shè),則函數(shù)為增函數(shù),且,
即,
故.
科目:高中數(shù)學 來源: 題型:
【題目】已知橢圓:的四個頂點圍成的四邊形的面積為,原點到直線的距離為.
(1)求橢圓的方程;
(2)已知定點,是否存在過的直線,使與橢圓交于,兩點,且以為直徑的圓過橢圓的左頂點?若存在,求出的方程:若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,長途車站P與地鐵站O的距離為千米,從地鐵站O出發(fā)有兩條道路l1,l2,經(jīng)測量,l1,l2的夾角為45°,OP與l1的夾角滿足tan=(其中0<θ<),現(xiàn)要經(jīng)過P修條直路分別與道路l1,l2交匯于A,B兩點,并在A,B處設(shè)立公共自行車停放點.
(1)已知修建道路PA,PB的單位造價分別為2m元/千米和m元/千米,若兩段道路的總造價相等,求此時點A,B之間的距離;
(2)考慮環(huán)境因素,需要對OA,OB段道路進行翻修,OA,OB段的翻修單價分別為n元/千米和n元/千米,要使兩段道路的翻修總價最少,試確定A,B點的位置.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知圓C的方程為:(x-3)2+(y-2)2=r2(r>0),若直線3x+y=3上存在一點P,在圓C上總存在不同的兩點M,N,使得點M是線段PN的中點,則圓C的半徑r的取值范圍是________.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】在平面直角坐標系中,以原點O為極點,x軸的正半軸為極軸建立極坐標系,兩種坐標系中取相同的長度單位.已知直線l的參數(shù)方程為(t為參數(shù)),曲線C的極坐標方程為ρ=4sin(θ+).
(1)求直線l的普通方程與曲線C的直角坐標方程;
(2)若直線l與曲線C交于M,N兩點,求△MON的面積.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某學校為調(diào)查高三年級學生的身高情況,按隨機抽樣的方法抽取100名學生,得到男生身高情況的頻率分布直方圖(圖(1))和女生身高情況的頻率分布直方圖(圖(2)).已知圖(1)中身高在的男生人數(shù)有16人.
(1)試問在抽取的學生中,男,女生各有多少人?
(2)根據(jù)頻率分布直方圖,完成下列的列聯(lián)表,并判斷能有多大(百分之幾)的把握認為“身高與性別有關(guān)”?
總計 | |||
男生身高 | |||
女生身高 | |||
總計 |
(3)在上述100名學生中,從身高在之間的男生和身高在之間的女生中間按男、女性別分層抽樣的方法,抽出6人,從這6人中選派2人當旗手,求2人中恰好有一名女生的概率.
參考公式:
參考數(shù)據(jù):
0.025 | 0.010 | 0.005 | 0.001 | |
5.024 | 6.635 | 7.879 | 10.828 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】十九大以來,某貧困地區(qū)扶貧辦積極貫徹落實國家精準扶貧的政策要求,帶領(lǐng)廣大農(nóng)村地區(qū)人民群眾脫貧奔小康。經(jīng)過不懈的奮力拼搏,新農(nóng)村建設(shè)取得巨大進步,農(nóng)民年收入也逐年增加。為了更好的制定2019年關(guān)于加快提升農(nóng)民年收人力爭早日脫貧的工作計劃,該地扶貧辦統(tǒng)計了2018年位農(nóng)民的年收人并制成如下頻率分布直方圖:
(1)根據(jù)頻率分布直方圖,估計位農(nóng)民的年平均收入(單位:千元)(同一組數(shù)據(jù)用該組數(shù)據(jù)區(qū)間的中點值表示);
(2)由頻率分布直方圖,可以認為該貧困地區(qū)農(nóng)民年收入服從正態(tài)分布,其中近似為年平均收入,近似為樣本方差,經(jīng)計算得.利用該正態(tài)分布,求:
(i)在2019年脫貧攻堅工作中,若使該地區(qū)約有占總農(nóng)民人數(shù)的的農(nóng)民的年收入高于扶貧辦制定的最低年收入標準,則最低年收入大約為多少千元?
(ii)為了調(diào)研“精準扶貧,不落一人”的政策要求落實情況,扶貧辦隨機走訪了位農(nóng)民。若每個農(nóng)民的年收人相互獨立,問:這位農(nóng)民中的年收入不少于千元的人數(shù)最有可能是多少?
附:參考數(shù)據(jù)與公式
則①;②;③.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知橢圓的中心為坐標原點,焦點在軸上,離心率,以橢圓的長軸和短軸為對角線的四邊形的周長為.
(Ⅰ)求橢圓的標準方程;
(Ⅱ)若經(jīng)過點的直線交橢圓于兩點,是否存在直線 ,使得到直線的距離滿足恒成立,若存在,請求出的值;若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某校高三期中考試后,數(shù)學教師對本次全部學生的數(shù)學成績按1∶20進行分層抽樣,隨機抽取了20名學生的成績?yōu)闃颖荆煽冇们o葉圖記錄如圖所示,但部分數(shù)據(jù)不小心丟失,同時得到如下表所示的頻率分布表:
分數(shù)段(分) | 總計 | |||||
頻數(shù) | ||||||
頻率 | 0.25 |
(1)求表中,的值及成績在范圍內(nèi)的樣本數(shù);
(2)從成績內(nèi)的樣本中隨機抽取4個樣本,設(shè)其中成績在內(nèi)的樣本個數(shù)為隨機變量,求的分布列及數(shù)學期望;
(3)若把樣本各分數(shù)段的頻率看作總體相應各分數(shù)段的概率,現(xiàn)從全校高三期中考試數(shù)學成績中隨機抽取5個,求其中恰有2個成績在內(nèi)的概率.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com