如圖,圓周上按順時(shí)針?lè)较驑?biāo)有1,2,3,4,5五個(gè)點(diǎn). 一只青蛙按順時(shí)針?lè)较蚶@圓從一個(gè)點(diǎn)跳到另一個(gè)點(diǎn),若它停在奇數(shù)點(diǎn)上,則下次只能跳一個(gè)點(diǎn);若停在偶數(shù)點(diǎn)上,則跳兩個(gè)點(diǎn). 該青蛙從“5”這點(diǎn)起跳,經(jīng)2 014次跳后它停在的點(diǎn)對(duì)應(yīng)的數(shù)字是   .
2
由題意得:該青蛙從“5”這點(diǎn)起跳,停在的點(diǎn)對(duì)應(yīng)的數(shù)字依次為1,2,4,1,2,4,因此經(jīng)2 014次跳后它停在的點(diǎn)對(duì)應(yīng)的數(shù)字是2.
【命題意圖】本題考查數(shù)列規(guī)律知識(shí) ,意在考查歸納的能力.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

如圖所示的兩個(gè)同心圓盤(pán)均被等分(),在相重疊的扇形格中依次同時(shí)填上,內(nèi)圓盤(pán)可繞圓心旋轉(zhuǎn),每次可旋轉(zhuǎn)一個(gè)扇形格,當(dāng)內(nèi)圓盤(pán)旋轉(zhuǎn)到某一位置時(shí),定義所有重疊扇形格中兩數(shù)之積的和為此位置的“旋轉(zhuǎn)和”.
(1)求個(gè)不同位置的“旋轉(zhuǎn)和”的和;
(2)當(dāng)為偶數(shù)時(shí),求個(gè)不同位置的“旋轉(zhuǎn)和”的最小值;
(3)設(shè),在如圖所示的初始位置將任意對(duì)重疊的扇形格中的兩數(shù)均改寫(xiě)為0,證明:當(dāng)時(shí),通過(guò)旋轉(zhuǎn),總存在一個(gè)位置,任意重疊的扇形格中兩數(shù)不同時(shí)為0.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

已知集合是正整數(shù)的一個(gè)排列,函數(shù)
 對(duì)于,定義:,,稱(chēng)的滿(mǎn)意指數(shù).排列為排列的生成列.
(Ⅰ)當(dāng)時(shí),寫(xiě)出排列的生成列;
(Ⅱ)證明:若中兩個(gè)不同排列,則它們的生成列也不同;
(Ⅲ)對(duì)于中的排列,進(jìn)行如下操作:將排列從左至右第一個(gè)滿(mǎn)意指數(shù)為負(fù)數(shù)的項(xiàng)調(diào)至首項(xiàng),其它各項(xiàng)順序不變,得到一個(gè)新的排列.證明:新的排列的各項(xiàng)滿(mǎn)意指數(shù)之和比原排列的各項(xiàng)滿(mǎn)意指數(shù)之和至少增加

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

已知等比數(shù)列{an}中,a1=3,a4=81,當(dāng)數(shù)列{bn}滿(mǎn)足bn=log3an,則數(shù)列{
1
bnbn+1
}
的前2013項(xiàng)和S2013為_(kāi)_____.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

若單調(diào)遞增數(shù)列滿(mǎn)足,且,則的取值范圍是     .

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

已知數(shù)列的前n項(xiàng)和為,那么該數(shù)列的通項(xiàng)公式為=_______.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

數(shù)列的前n項(xiàng)和記為點(diǎn)在直線(xiàn)上,.(1)若數(shù)列是等比數(shù)列,求實(shí)數(shù)的值;
(2)設(shè)各項(xiàng)均不為0的數(shù)列中,所有滿(mǎn)足的整數(shù)的個(gè)數(shù)稱(chēng)為這個(gè)數(shù)列的“積異號(hào)數(shù)”,令),在(1)的條件下,求數(shù)列的“積異號(hào)數(shù)”

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

設(shè)數(shù)列為等差數(shù)列,且,,數(shù)列的前項(xiàng)和為,.
(1)求數(shù)列,的通項(xiàng)公式;
(2)若,為數(shù)列的前項(xiàng)和,對(duì)恒成立,求的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

觀察下列等式
12=1
12-22=-3
12-22+32=6
12-22+32-42=-10
……
照此規(guī)律,第n個(gè)等式可為_(kāi)_______.

查看答案和解析>>

同步練習(xí)冊(cè)答案