14.已知函數(shù)f(x)=-x2+4|x|+5.
(1)畫出函數(shù)y=f(x)在閉區(qū)間[-5,5]上的大致圖象;
(2)若直線y=a與y=f(x)的圖象有2個不同的交點,求實數(shù)a的取值范圍.

分析 (1)寫出分段函數(shù)解析式,由二次函數(shù)的圖象作圖;
(2)數(shù)形結(jié)合可得使直線y=a與y=f(x)的圖象有2個不同的交點的實數(shù)a的取值范圍.

解答 解:(1)f(x)=-x2+4|x|+5=$\left\{\begin{array}{l}{-{x}^{2}+4x+5,x≥0}\\{-{x}^{2}-4x+5,x<0}\end{array}\right.$,
函數(shù)在閉區(qū)間[-5,5]上的大致圖象如圖:

(2)直線y=a與y=f(x)的圖象有2個不同的交點,則a=9或a<5.

點評 本題考查根的存在性及根的個數(shù)判斷,考查了數(shù)形結(jié)合的解題思想方法,是中檔題.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.已知函數(shù)f(x)=x+$\frac{a}{x}$,且f(1)=10.
(1)求a的值;
(2)判斷f(x)的奇偶性,并證明你的結(jié)論.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.給出下列四個函數(shù),其中圖象關(guān)于y軸對稱的是( 。
A.y=x-5B.y=$\frac{{x}^{2}+1}{x}$C.y=2x+log2xD.y=3x+3-x

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

2.若函數(shù)f(x)的定義域為[-1,2],則函數(shù)f(2x-1)的定義域為[0,$\frac{3}{2}$].

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

9.如圖,平行六面體ABCDA1B1C1D1中,$\overrightarrow{AB}$=a,$\overrightarrow{AD}$=b,$\overrightarrow{A{A}_{1}}$=c,E為A1D1的中點,F(xiàn)為BC1與B1C的交點,
(1)用基底{a,b,c}表示下列向量:$\overrightarrow{D{B}_{1}}$,$\overrightarrow{BE}$,$\overrightarrow{AF}$;
(2)在圖中畫出$\overrightarrow{D{D}_{1}}$+$\overrightarrow{DB}$+$\overrightarrow{CD}$化簡后的向量.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

19.若冪函數(shù)f(x)=xm的圖象過點(2,$\frac{\sqrt{2}}{2}$),則f(4)的值為$\frac{1}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.雙曲線C1與雙曲線$\frac{{x}^{2}}{2}$-$\frac{{y}^{2}}{4}$=1有共同的漸近線,且經(jīng)過點A(2,-$\sqrt{6}$),橢圓C2以雙曲線C1的焦點為焦點且橢圓上的點與焦點的最短距離為$\sqrt{3}$,求雙曲線C1和橢圓C2的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.要得到函數(shù) f(x)=sin(3x+$\frac{π}{3}$)的導(dǎo)函數(shù)f′(x)的圖象,只需將f(x)的圖象( 。
A.向右平移$\frac{π}{3}$個單位,再把各點的縱坐標伸長到原來的3倍( 橫坐標不變)
B.向右平移$\frac{π}{6}$個單位,再把各點的縱坐標縮短到原來的3倍( 橫坐標不變)
C.向左平移$\frac{π}{3}$個單位,再把各點的縱坐標縮短到原來的 3倍( 橫坐標不變)
D.向左平移$\frac{π}{6}$個單位,再把各點的縱坐標伸長到原來的 3倍( 橫坐標不變)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.設(shè)集合A={x|-1<x<1},B={x|log2x<-1},則A∩B=( 。
A.$({0,\frac{1}{2}})$B.$({\frac{1}{2},1})$C.(0,1)D.$({-1,\frac{1}{2}})$

查看答案和解析>>

同步練習冊答案