設(shè)f(x)是定義在R上的函數(shù),且對(duì)任意x,y∈R,均有f(x+y)=f(x)+f(y)+2014成立,若函數(shù)g(x)=f(x)+2014x2013有最大值M和最小值m,則M+m=
 
考點(diǎn):函數(shù)奇偶性的性質(zhì),函數(shù)的最值及其幾何意義
專題:函數(shù)的性質(zhì)及應(yīng)用
分析:本題可先研究函數(shù)f(x)的特征,構(gòu)造與f(x)、g(x)相關(guān)的奇函數(shù),利用奇函數(shù)的圖象對(duì)稱性,得到相應(yīng)的最值關(guān)系,從而得到g(x)的最大值M與最小值m的和,得到本題結(jié)論.
解答: 解:∵f(x)是定義在R上的函數(shù),且對(duì)任意x,y∈R,均有f(x+y)=f(x)+f(y)+2014成立,
∴取x=y=0,得:f(0)=f(0)+f(0)+2014,f(0)=-2014,
取y=-x,得到:f(0)=f(x)+f(-x)+2014,
∴f(x)+f(-x)=-4028.
記h(x)=f(x)+2014x2013+2014,
則h(-x)+h(x)=[f(-x)+2014(-x)2013+2014]+f(x)+2014x2013+2014
=f(x)+f(-x)+2014x2013-2014x2013+4028
=f(x)+f(-x)+4028
=0,
∴y=h(x)為奇函數(shù).
記h(x)的最大值為A,則最小值為-A.
∴-A≤f(x)+2014x2013+2014≤A,
∴-A-2014≤f(x)+2014x2013≤A-2014,
∵g(x)=f(x)+2014x2013,
∴∴-A-2014≤g(x)≤A-2014,
∵函數(shù)g(x)有最大值M和最小值m,
∴M=A-2014,m=-A-2014,
∴M+m=A-2014+(-A-2014)
=-4028.
故答案為:-4028.
點(diǎn)評(píng):本題考查了函數(shù)奇偶性及其應(yīng)用,還考查了抽象函數(shù)和構(gòu)造法,本題難度適中,屬于中檔題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

光線從點(diǎn)A(-2,
3
)射到x軸上的B點(diǎn)后,被x軸反射,這時(shí)反射光線恰好過(guò)點(diǎn)C(1,2
3
),則光線BC所在直線的傾斜角為( 。
A、
π
6
B、
π
3
C、
3
D、
6

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

不等式
.
2x-36
3x+1
.
>0的解集為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

在△ABC中,已知(a+b+c)(b+c-a)=3bc,且sinA=2sinB•cosC,試判斷△ABC的形狀.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

下列函數(shù)中,最小值為2的是( 。
A、y=x+
1
x
B、y=
x2+4
x2+3
C、y=
x
+
4
x
-2
D、y=(x2+1)2+2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)正四棱柱的底面邊長(zhǎng)為a,側(cè)棱長(zhǎng)為l,且l>a.已知該正四棱柱的表面積是144cm2,對(duì)角線長(zhǎng)是9cm,則a=
 
cm.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=ex,如果x1,x2∈R,且x1≠x2,下列關(guān)于f(x)的性質(zhì),其中正確的是( 。
①(x1-x2)[f(x1)-f(x2)]>0;
②f(-x)=f(x);
③f(-x)=-f(x);
f(x1)+f(x2)
2
>f(
x1+x2
2
).
A、①②B、①③C、②④D、①④

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

若(2x-1)2014=a0+a1x+a2x2+…+a2014x2014(x∈R),則
a0
a1+2a2+3a3+…+2014a2014
=( 。
A、
1
2014
B、-
1
2014
C、
1
4028
D、-
1
4028

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)x,y滿足約束條件:
x≥1
y≥
1
2
x
2x+y≤10
的可行域?yàn)镸
(1)求A=y-2x的最大值與B=x2+y2的最小值;
(2)若存在正實(shí)數(shù)a,使函數(shù)y=2asin(
x
2
+
π
4
)cos(
x
2
+
π
4
)的圖象經(jīng)過(guò)區(qū)域M中的點(diǎn),求這時(shí)a的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案