5.在數(shù)列{an}中,已知a2=1,an+2+(-1)n-1an=2,記Sn是數(shù)列{an}的前n項和,則S80=( 。
A.1640B.1680C.3240D.1600

分析 an+2+(-1)n-1an=2,可得a2k+1+a2k-1=2,a2k+2-a2k=2,k∈N*,即數(shù)列{a2k}是等差數(shù)列,首項為1,公差為2.利用分組求和即可得出.

解答 解:∵an+2+(-1)n-1an=2,
∴a2k+1+a2k-1=2,a2k+2-a2k=2,k∈N*
∴數(shù)列{a2k}是等差數(shù)列,首項為1,公差為2.
∴S80=[(a1+a3)+…+(a77+a79)]+(a2+a4+…+a80
=2×20+40×1+$\frac{40×39}{2}$×2
=1640,
故選:A.

點評 本題考查了遞推關(guān)系、分組求和、等差數(shù)列的前n項和公式,考查了推理能力與計算能力,屬于中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

15.在10次拋擲硬幣的游戲中,正面出現(xiàn)的概率為$\frac{1}{5}$,則反面出現(xiàn)的概率是$\frac{4}{5}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.在平面直角坐標(biāo)系中,點P是由不等式組$\left\{\begin{array}{l}{2x-y+1≥0}\\{x+y-1≥0}\\{3x+y-3≤0}\end{array}\right.$所確定的平面區(qū)域內(nèi)的動點,Q是直線3x+y=0上任意一點,O為坐標(biāo)原點,則|$\overrightarrow{OP}$-$\overrightarrow{OQ}$|的最小值為( 。
A.$\frac{\sqrt{10}}{10}$B.$\frac{3\sqrt{10}}{10}$C.$\frac{\sqrt{2}}{2}$D.3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.已知等差數(shù)列{an}滿足:a1+a4+a7=2π,則tan(a2+a6)的值為( 。
A.-$\sqrt{3}$B.-$\frac{\sqrt{3}}{3}$C.$\frac{\sqrt{3}}{3}$D.$\sqrt{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

20.x,y自變量滿足$\left\{\begin{array}{l}{x≥0}\\{y≥0}\\{x+y≤S}\\{y+2x≤4}\end{array}\right.$,當(dāng)3≤S≤5時,則Z=3x+2y的最大值的變化范圍為[7,8].

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

10.已知數(shù)列{an}的前6項依次構(gòu)成一個公差為整數(shù)的等差數(shù)列,且從第5項起依次構(gòu)成一個等比數(shù)列,若a1=-3,a7=4.
(I)求數(shù)列{an}的通項公式;
(Ⅱ)設(shè)Sn是數(shù)列{an}的前n項和,求使Sn>2016成立的最小正整數(shù)n的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

17.設(shè)數(shù)列{an}的前n項和為Sn,已知3an-2Sn=2.
(Ⅰ)求{an}的通項公式an;
(Ⅱ)求證:Sn+12-SnSn+2=4×3n

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.點P(tan2015°,cos2016°)位于的象限為( 。
A.第一象限B.第二象限C.第三象限D.第四象限

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

15.若函數(shù)f(x)=4sinx+acosx的最大值為5,則常數(shù)a=±3.

查看答案和解析>>

同步練習(xí)冊答案