已知正三棱錐P-ABC的四個頂點(diǎn)都在同一球面上,其中底面的三個頂點(diǎn)在該球的一個大圓上.若正三棱錐的高為1,則球的半徑為    ,P,A兩點(diǎn)的球面距離為   
【答案】分析:由題意不難求得球的半徑,求出PA兩點(diǎn)的球心角,即可求出P,A兩點(diǎn)的球面距離.
解答:解:正三棱錐P-ABC的四個頂點(diǎn)都在同一球面上,
其中底面的三個頂點(diǎn)在該球的一個大圓上.
所以ABC的中心就是球心O,PO是球的半徑,也是正三棱錐的高為1,
球的半徑是:1
由題意可知:OA=1 且∠AOP=90°
P,A兩點(diǎn)的球面距離為:
故答案為:1,
點(diǎn)評:本題考查球面距離及其他計(jì)算,考查空間想象能力,是基礎(chǔ)題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知正三棱錐P-ABC的側(cè)棱長為2,底面邊長為1,平行四邊形EFGH的四個頂點(diǎn)分別在棱AB、BC、CP、PA上,則
1
EF
+
1
FG
的最小值為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)已知正三棱錐P-ABC主視圖如圖所示,其中△PAB中,AB=PC=2cm,則這個正三棱錐的左視圖的面積為
 
cm2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知正三棱錐P-ABC的底面邊長為6,側(cè)棱長為
13
.有一動點(diǎn)M在側(cè)面PAB內(nèi),它到頂點(diǎn)P的距離與到底面ABC的距離比為2
2
:1

精英家教網(wǎng)
(1)求動點(diǎn)M到頂點(diǎn)P 的距離與它到邊AB的距離之比;
(2)在側(cè)面PAB所在平面內(nèi)建立為如圖所示的直角坐標(biāo)系,求動點(diǎn)M的軌跡方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2012年江蘇省四星高中高三數(shù)學(xué)小題訓(xùn)練(7)(解析版) 題型:解答題

已知正三棱錐P-ABC主視圖如圖所示,其中△PAB中,AB=PC=2cm,則這個正三棱錐的左視圖的面積為    cm2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2010年江蘇省蘇州市高考信息數(shù)學(xué)試卷(正題)(解析版) 題型:解答題

已知正三棱錐P-ABC主視圖如圖所示,其中△PAB中,AB=PC=2cm,則這個正三棱錐的左視圖的面積為    cm2

查看答案和解析>>

同步練習(xí)冊答案